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Experimental results are presented that reveal the structure of a two-dimensional
turbulent boundary layer which has been investigated by measuring the time-
dependent vorticity flux at the wall, vorticity vector, strain-rate tensor and dissipation-
rate tensor in the near-wall region with spatial resolution of the order of 7 Kolmogorov
viscous length scales. Considerations of the structure function of velocity and pressure,
which constitute vorticity flux and vorticity, indicated that, in the limit of vanishing
distance, the maximum attainable content of these quantities which corresponds to
unrestricted resolution, is determined by Taylor’s microscale. They also indicated that
most of the contributions to vorticity or vorticity flux come from the uncorrelated part
of the two signals involved. The measurements allowed the computation of all
components of the vorticity stretching vector, which indicates the rate of change of
vorticity on a Lagrangian reference frame if viscous effects are negligible, and several
matrix invariants of the velocity gradient or strain-rate tensor and terms appearing in
the transport equations of vorticity, strain rate and their squared fluctuations. The
orientation of vorticity revealed several preferential directions. During bursts or
sweeps vorticity is inclined at 35° to the longitudinal direction. It was also found that
there is high probability of the vorticity vector aligning with the direction of the
intermediate extensive strain corresponding to the middle eigenvector of the strain-rate
matrix. The results of the joint probability distributions of the vorticity vector
orientation angles showed that these angles may be related to those of hairpin vortex
structures. All invariants considered exhibit a very strong intermittent behaviour which
is characterized by large-amplitude bursts which may be of the order of 10 r.m.s.
values. Small-scale motions dominated by high rates of turbulent kinetic energy
dissipation and high enstrophy density are of particular interest. It appears that the
fluctuating strain field dominates the fluctuations of pressure more than enstrophy.
Local high values of the invariants are also often associated with peaks in the shear
stress.

1. Introduction

Most of the experimental research conducted so far on turbulent flows has been
aimed mainly at gathering information on the velocity field in different types of flow
configurations, which enhanced our understanding of the underlying physics of these
flows. The velocity field, however, is not well suited for defining and identifying
organized structures in time-dependent vortical flows because the streamlines and
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pathlines are completely different in two different inertial frames of reference. Better
understanding of the nature of turbulent structures and vortex motions of turbulent
flows, particularly in the high-wavenumber region, often requires spatially and
temporally resolved measurements of the so-called structure function of velocity ∆U or
pressure ∆p. Thus obtaining experimental information on velocity or pressure
derivatives may provide insight into the complicated fluid dynamics phenomena of
turbulent flows. The availability of these measurements, even in the case of the simplest
possible wall-bounded flows, for example that in a zero-pressure-gradient incom-
pressible two-dimensional boundary layer over a smooth flat plate, will lead to
information on important quantities like vorticity, rate-of-strain tensor and its matrix
invariants and dissipation rate of turbulent kinetic energy, all of which are therefore
well suited for describing physical phenomena in vortical flows.

The incompressible Navier–Stokes equations in tensor notation
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where (D}Dt¯ ¥}¥tu
k
¥}¥x

k
is the total derivative, τ

ki
is the shear stress, p is the

pressure, ρ is the density of the fluid and ν is the kinematic viscosity. The transport
equation for vorticity describes two dynamically significant processes for the vorticity
vector ω, namely that of stretching or compression by the strain s

ik
and viscous

diffusion down a vorticity gradient. The viscous term may also describe reconnection
of vortex lines at very small scales due to viscosity. The convection of vorticity has the
characteristic that it is preserved on a particle path, which implies that the vorticity can
only be transferred to the neighbouring fluid particle by diffusion, i.e. by the effect of
viscosity. The diffusion together with the convection results in the spread}decay of
vorticity and thus plays a vital role in the development of vortical flows. Unlike
Navier–Stokes equations for momentum conservation, the pressure term does not
appear explicitly in the vorticity transport equation and therefore enables simplification
in the computation and interpretation of the theoretical models of more ‘complex’
flows.

The dynamical equation for the strain s is more complex. In addition to the
nonlinear interaction and viscous smoothing, the strain undergoes rotation due to
vorticity and is subjected to the non-local action of the pressure hessian ¥#p}(¥x

i
¥x

j
).

When a fluid element approaches the wall of a bounded flow from the outer part and
subsequently comes in direct contact with the stationary surface its vorticity will
change because of the no-slip condition at the wall. If it were irrotational initially it
will acquire vorticity and if it were vortical its vorticity will change. The quantity which
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F 1. Coordinate system in the boundary layer flow.

describes this process is the vorticity gradient normal to the wall ®[¥ω
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(see
figure 1 for the coordinate system definition) which is called the vorticity flux density,
a term first introduced by Lighthill (1963) who in fact defined it for two-dimensional
flows by analogy to Fourier’s heat conduction as ®ν[¥ω

k
}¥x
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]
wall

. The term ‘vorticity
flux’ describes the rate of vorticity production at the wall which then enters the flow.
In that sense it is more important to know the amount of vorticity entering the flow
than the vorticity at the wall. Vorticity dynamics inside the flow are, however, best
described by using vorticity as a variable. Panton (1984) defines vorticity flux by the
expression

σ
i
¯®νn[(¡ω), (1.5)

where n is unit vector normal to the surface and pointing away toward the fluid, which
can now be applied to three-dimensional flows. Lyman (1990) looked at the analogy
to Fourier’s law of heat conduction and proposed another definition of vorticity flux
as

®νn¬(¡¬ω). (1.6)

Although the two definitions are not equivalent, both give the same result when they
are integrated over a closed control surface.

The vorticity flux at a boundary does not only describe the vorticity source strength
on the boundary but it is also related to the total force acting on this surface. Wu &
Wu (1996) have provided a formulation for the drag and lift forces acting on a body
in terms of vorticity flux at the solid boundary.

The momentum equation evaluated at the wall, where the velocity vector is
identically zero because of no-slip conditions, yields

¥p
¥x

i

¯ ρ
¥τ

ki

¥x
k

(1.7)

and
¥p
¥x

i

¯®µε
ijk

¥ω
k

¥x
j

. (1.8)

Equation (1.8) indicates that the wall pressure gradient generates flux of vorticity into
the fluid and shows that there is a strong coupling between pressure and vorticity. This
relation is not apparent in the vorticity transport equation since the latter does not
include any pressure term as shown in (1.2).

The present paper reports on new results based on spatially and temporally resolved
measurements of the three components of vorticity ω

k
, all terms of the rate-of-strain

tensor s
ij

and total dissipation 2νs
ij
s
ij

and several matrix invariants of the velocity
gradient and strain-rate tensors inside a two-dimensional incompressible turbulent
boundary layer. Ensemble averages of the data conditioned on large excursions of
vorticity or vorticity flux at the wall beneath the flow will be also presented.
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The difficulties associated with the measurements of velocity gradients in turbulent
flows are described in the recent review article by Wallace & Foss (1995) where almost
all of the available techniques are discussed in detail and existing data are compared.
The majority of the techniques are based on thermal anemometry or on optical
methods. These authors demonstrated that thermal anemometry can be used
satisfactorily to provide point measurements of vorticity over longer times than optical
techniques, which are capable of producing global measurements of vorticity over only
very short times. The review concludes that thermal anemometry methods, to date, are
the principal experimental source of knowledge about statistical properties of turbulent
flow vorticity fields.

The objectives of the present work therefore are as follows:
(i) To design and develop a new probe for measurements of the velocity gradient

tensor which is economical, reliable and based on thermal anemometry techniques well
established in the field;

(ii) to perform time-dependent measurements of velocity, vorticity vector, rate-of-
strain tensor and dissipation using this probe in the turbulent boundary layer and
compare major statistical properties including those of vorticity with the existing data,
and further understand the dynamic processes associated with turbulence in the flow
near the wall by applying conditional sampling techniques to the acquired data;

(iii) to obtain estimates of the vorticity flux at the wall beneath the boundary flow
by carrying out time-dependent measurements of pressure gradients by a special
pressure module combined with simultaneous measurements of velocity gradients off
the wall.

It is hoped that this modest attempt will provide additional information on the
dynamics of the near-wall vortical structures.

2. Experimental arrangement, instrumentation and techniques

2.1. Flow facility

All the experimental investigations in this research have been carried out in the wind
tunnel of The Mechanical Engineering Department, at CCNY (figure 2). It is of open-
ended suction type, with 4 ft¬4 ft cross-section and has a 28 ft long working area. It
is powered by a 20 hp, 460 V, three phase frequency-controlled AC motor, driving an
axial fan with seven blades rotating at a maximum r.p.m. of 1750 delivering 32000
cubic ft min−" capacity providing a maximum speed of 11.5 m s−" in the working
section. The flow velocity can be controlled by varying the frequency from 0 to 100%
in 5% increments. The motor and fan assembly is housed in a sound absorbing
diffuser, allowing low noise operation of the facility and low levels of acoustical noise
transmitted in the working section. It is also mounted on a frame which rests on eight
springs to minimize vibration and isolates the motor and fan assembly from the
working section. Three sides, i.e. top, bottom and one wall of the working section, are
of 1 in. plywood while the other wall has four Plexiglas windows also of 1 in. thickness
for observation. The inside of the working section is painted black to aid in flow
visualization studies. The inlet of the contraction section is fitted with honeycomb
followed by three layers of fine steel screen to obtain uniform flow of turbulence
intensity less than 0.1% for the maximum speed in the working section. This
contraction section is 12 ft¬12 ft at one end narrowing down to 4 ft¬4 ft, resulting in
9:1 contraction ratio.

The boundary layer under investigation is developed on the floor of the wind tunnel
and transition to a stable turbulent flow is triggered by a 1 in. wide strip of medium-



Near-wall region of turbulent boundary layers 33

12 ft 4 ft

28 ft

F 2. Wind tunnel facility.
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T 1. Principal flow parameters.

grit sandpaper which is glued on the floor across the entire span upstream at the
entrance of the working section to obtain a fully developed turbulent boundary layer
at the measuring location 22 ft downstream for the test velocity of 3.2 m s−". The
spanwise uniformity of the flow was checked by Preston and Pitot tube traverses 12 in.
on either side of the measuring location and it was found to be within the range
suggested by Brederode & Bradshaw (1974) for minimum three-dimensional effects in
nominally two-dimensional boundary layers. The skin friction coefficient c

f
computed

from these tests agreed with the values obtained from Clauser charts. The coefficient
of skin fraction c

f
was evaluated at several Reynolds numbers in the working section

and a plot of these values against the Reynolds number based on the momentum
thickness θ is shown in Andreopoulos & Agui (1996). On this plot the data of Coles
(1962), Schewe (1983) and Spalart (1988) are also shown for comparison. The present
values of c

f
in the worst case are about 3% higher than those from the analysis by

Coles of Weighard’s data. The mean velocity profile as measured at the centre of the
tunnel width by a Pitot tube indicated a well-developed turbulent boundary layer flow
for the investigations.

The principal parameters of the flow are stated in table 1.

2.2 The indi�idual triple wire probe

The probe essentially consists of a set of three triple hot wires and several key features
of the individual triple-hot-wire probe are as follows.

Each sensor of the triple wire is mutually orthogonal to the others, thus oriented at
approximately 54.7° to the probe axis. Each of the 2.5 µm diameter tungsten sensors
is welded on two individual prongs which have been tapered at the tips. Thus each
sensor is operated independently since no common prongs are used. The hot-wire
output voltage E is related to the effective coding velocity U

eff
‘as seen by the sensor’

through the well-know King’s law:

E #¯ABUn
eff

. (2.1)

The effective cooling velocity is related to that measured during the calibration in at
least three different ways: (i) ‘Cosine law’ as stipulated by Bradshaw (1971), which
utilizes the effect of cooling by only one component of velocity, (ii) Hinze’s (1959)
relation, which accounts for two components on the cooling and (iii) Jorgensen’s
(1971) expression which takes into consideration the full three-dimensional cooling
effect on the sensor. Measurements made by single or cross-wires have always ignored
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the effect of at least one component of velocity in the expression for U
eff

. It has been
demonstrated through many experimental tests on hot-wire anemometry that
Jorgensen’s equation accurately represents the directional response of the hot wire to
both yaw and pitch angles up to 70° and so will also be used for the present probe. The
effective velocity is related to U

N
, U

T
and U

B
, the normal, tangential and binormal

components of the velocity vector respectively, by
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where k and h are yaw and pitch coefficients. Details of the techniques associated with
the use of triple-wire probes can be found in Andreopoulos (1983a) while estimates of
errors related to probe geometry and turbulence intensity are described by
Andreopoulos (1983b).

It has been reported by Willmarth & Bogar (1977), Chang, Adrian & Jones (1983),
Willmarth (1985) and Lekakis, Adrian & Jones (1989) that the hot-wire response
equations may introduce multiple solutions. This is attributed to the strong dependence
of the nonlinear hot-wire output on the yaw and pitch angle of the velocity vector in
combination with the probe geometry. This led many researchers to introduce a fourth
wire on their triple-wire probes in order to improve the yaw and pitch response (see
Tsinober, Kit & Dracos 1992; Marasli, Nguyen & Wallace 1993).

The work of Honkan & Andreopoulos (1993) introduced the following realizability
condition which the hot-wire response should satisfy in order to avoid multiple
solutions. If it is assumed that each of the three output voltages of the triple-hot-wire
probe is a continuous function of the velocity vector of the flow, i.e.
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where Q is the magnitude of the velocity vector, γ is the pitch angle and δ is the yaw
angle, then it can be concluded that (2.3) define mathematically a mapping of the ²Q,
γ, δ´ three-dimensional space onto the ²E
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´ three-dimensional space. If the above

functions and their partial derivatives are continuous at any point inside a domain T
of the three-dimensional space, then the condition for uniqueness of the above
mapping is (Apostol 1981)
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The functional relations in (2.3) can be established through appropriate calibrations
and if J does not change sign at any point inside a defined domain, they can be inverted
to obtain unique measurements of the velocity vector.

The above condition is very general and it can be applied to any type of probe
configuration in terms of geometry, orientation or numbers of wires. It can be
expected, however, that not all types of probe configuration automatically satisfies the
realizability condition (2.4).

The anemometer output voltages E
"
, E

#
and E

$
, of the three hot wires are mapped

one-to-one to the magnitude of the calibration velocity Q, pitch angle γ and yaw angle
δ :
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)% (Q,γ, δ). (2.5)
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F 3. Validity domain of the hot-wire probe including all nine wires.

As already mentioned, this mapping is unique if the Jacobian is non-zero. The nine
elements of this Jacobian are the sensitivities of each of the hot-wire output voltages
with respect velocity, pitch and yaw angles. The first attempt to verify the uniqueness
of the mapping for this type of orthogonal-triple-wire probe was reported by Vrettos
(1984).

During calibration procedures, the functional relation E
i
¯E

i
(Q,γ, δ), with i¯ 1, 2,

3, was determined. Since Q, γ, δ, were varied by constant increments, consecutive
points in the [Q,γ, δ]-space represent an orthogonal paralleloepiped. However, this
shape is mapped onto an irregular prism where the voltages E

i
are not equally spaced.

The sensitivities appearing in the Jacobian were computed from finite differences of the
corresponding quantities obtained by calibration.

Figure 3 shows a plot of the sign of the Jacobian as a function of pitch and yaw
angles, γ and δ. It represents the validity domain or acceptance cone of the triple hot
wire as determined by the non-changing sign of the Jacobian. In general the Jacobian
is a function of Q, γ and δ. The sign of J, however, has been found experimentally to
be independent of Q for almost any γ or δ except close to the outer edges of the validity
domain. The results shown in figure 3 indicate no change in sign of the Jacobian and
therefore they suggest that the mapping is unique. On the same figure the ‘ theoretical ’
values have been plotted as calculated using King’s law and Jorgensen’s expression for
the effective velocity. They agree very well with those obtained experimentally except
very close to the edges of the domain where theoretical values of the sign of the
Jacobian are extended more than the experimental ones.
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2.3. Physical characteristics of the new probe for measurements of gradient �elocity
tensor

The probe, shown schematically in figure 4 consists of a set of three individual triple-
hot-wire sensors put together so that the probe remains geometrically axisymmetric. In
selecting the vorticity probe dimensions several considerations had to be taken into
account during the design process. (i) The individual wire length l

w
should be as small

as possible so that small scales can be resolved adequately. (ii) The size of the individual
triple-hot-wire probe, l

p
should be as small as possible to satisfy the assumption that

the velocity does not change substantially across the probe. Small wire spacing, however,
can lead to thermal interference and cross-talk between the wires. (iii) Since vorticity
or strain rate will be computed from velocity gradients, spacing of the individual
probes should be finite so that velocity gradients do not ‘disappear’. If this spacing
becomes small the effect of noise may overwhelm the signal (W. K. George 1993,
personal communication, and Wallace & Foss 1995). (iv) Each of the wires should be
controlled independently from the others. The use of one common prong as in the case
of Balint, Wallace & Vukoslavc3 evic! (1991) may create problems such as imbalance
under dynamic conditions. (v) The transfer function of the hot-wire}anemometer
system should be a three-dimensional one. This suggests that the probe should be able
to respond to yaw and pitch angle variations of the velocity vector in addition to its
magnitude. Very often King’s law is confined to contributions from one or two velocity
components only. While this assumption simplifies computations and it is adequate for
measurements in flows with low turbulence intensity, it is inadequate for measurements
in relatively high turbulence intensity. Very close to the wall fluctuations of the three
velocity components are very high and their magnitude is about the same in all three
directions. Neglecting contributions from one or two velocity components may lead to
very large errors in the measurements of turbulence (see Tutu & Chevray 1975).

The dimensions of the probe which were finally adopted are shown in figure 4. Two
photographs of the entire probe assembly are shown in figures 5(a) and 5(b).
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(a) (b)

F 5(a, b). Photographs of the probe.

The probe required additional prongs to operate each sensor independently, which
increased only minimally the blockage effects due to the six extra prongs by about
2.5% over that of Balint et al. Note that their probe uses 12 prongs by making one
common to a set of three hot wires. The present probe, owing to mutually orthogonal
orientation of wires, has a larger ‘acceptance cone’ when compared to the probe of
Balint et al. (1991) which has one wire at 45° to the plane of other two orthogonal
wires, and therefore the individual triple-wire probe is capable of measuring flows with
larger turbulence intensities.

2.4. Computations of �elocity gradients

In order to compute all three vorticity components, and the six distinct terms of the
rate-of-strain tensor, six velocity derivatives need to be evaluated from the three
velocity components measured at the three locations which are at the centres of each
of the three triple wires. If these velocity vectors are known then the derivatives are
evaluated as follows.

If the origin of a coordinate system is fixed at the centroid of the probe as shown in
figure 6(a) and subscript 0 refers to the centroid of the probe and subscripts 1, 2 and
3 refer to quantities at the centres of the first, second and third triple wires respectively,
then Taylor’s expansion of the velocity component u at the centroid, neglecting higher-
order derivative terms, yields
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which form the following system of linear equations:
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All the elements of the matrix on the right-hand side can be expressed in terms of 1
!

shown in figure 6(a). The solution of (2.9) yields the longitudinal velocity u
"!

and the
two spatial derivatives at the centroid of the probe.

Similar equations can be written for the normal component u
#!

and its partial
derivatives and for the transverse component u

$!

and its partial derivatives. Now the
streamwise derivatives are obtained by considering the momentum equation and
neglecting pressure and viscous forces gradients, and the final expressions can be
written as
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and similarly for the other gradients of the velocity components in the longitudinal
direction:
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which have been obtained by considering the momentum equations for the u
#
and u

$
components respectively.

Finally, the temporal derivatives in (2.11)–(2.13) can easily be evaluated by the
difference of two successive velocity values and the sampling frequency f

s
which

subsequently allows computation of the streamwise derivatives.
Thus the determination of the longitudinal velocity derivatives is not based entirely

on the original version of Taylor’s hypothesis.

2.5. The numerical schemes

The individual velocity vector at the centre of each triple wire was computed by two
different methods. In the first, the velocity is assumed to be uniform across each triple-
wire probe and change from one triple sensor to the other. Thus the actual velocity
profile, which to a first-order approximation in a Taylor’s series expansion can be
assumed to be linear, is simply segmented into two pieces (three areas in space) of
uniform velocity each with a velocity jump across them.

In the second method the velocity across each triple sensor is not assumed to be
uniform. Thus each the wires of one triple-wire probe sees different velocity vectors.
However, the velocity along each individual wire is assumed to be uniform. In addition,
the velocity gradient between two individual wires is assumed to be the same across the
entire probe. Under these assumptions the linear velocity profile is segmented into
multiple pieces, nine areas in total. Figure 6(b) shows schematically how the two
different approximations affect the velocity distribution across two triple-wire sensors
with only two wires shown on each sensor. It is expected that the second method is
more accurate because the distance across each triple sensor, i.e. its size, is very close
to the distances between the probes, and thus velocity gradients across each array
cannot be ignored. This technique has been successfully used in the work of Balint et
al. (1991) and it has been suggested by one of the referees.

As will be demonstrated later the two schemes yield results which, in general, are
different. Statistical quantities containing cross-stream components of the velocity
vector are affected most. An iterative scheme was used to improve the solutions
obtained with each iteration. The velocity gradients determined by the finite difference
described in the previous section were introduced to correct the velocity distribution
across the entire probe.

In the orthogonal coordinate system x, y, z of the j probe ( j¯ 1, 2, 3) the
components of the velocity vector V

!
at the origin are X

oj
, Y

oj
, Z

oj
. The velocity

components at the mid-point of each wire can be estimated to a first-order
approximation in a Taylor’s series expansion. Figure 6(c) shows schematically the
relative dimensions and the wire sensors arrangement in one individual triple-wire
probe. Thus the velocity components at the mid-point (0,∆y, 0) of the wire at the oy-
axis will be

X
oj


¥X
oj

¥y
∆y, Y

oj


¥Y
oj

¥y
∆y, Z

oj


¥Z
oj

¥y
∆y.
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F 7. Vorticity flux module with pressure transducers.

A typical expression for the effective velocity U
eff ij

of the ith wire (i¯ 1, 2, 3) of the jth
probe is as follows:

U #
eff ij

¯H #
ij0Xoj


¥X

oj

¥y
∆y1#K#

ij0Yoj


¥Y
oj

¥y
∆y1#M #

ij 0Zoj


¥Z
oj

¥y
∆y1#. (2.14)

The coefficients H
ij
, K

ij
and M

ij
are determined through calibrations. Each of the

gradients ¥X
oj
}¥y, ¥Y

oj
}¥y, ¥Z

oj
}¥y can be expressed in terms of the velocity gradients

in the coordinates of the centroid by simple transformations.
A system of three equations, one for each of the wires of the triple-sensor array, can

be solved to provide estimates of the velocity vector (X
oj
,Y

oj
,Z

oj
). The solution

procedure is iterative. An initial guess of the velocity components is obtained by
assuming that the increments (¥X

oj
}¥y)∆y, (¥Y

oj
}¥y)∆y, (¥Z

oj
}¥y)∆y are initially zero.

Then the velocity vectors at the origin of each of the triple-wire probes can be obtained
and subsequently the velocity gradients can be computed by the finite difference scheme
described in §2.4. This leads to the first estimates of all partial velocity gradients which
can be introduced into the system of equation (2.14) and a second estimate of velocity
vectors and velocity gradients can be obtained. The iteration stops when the solutions
converge. Usually a small number of iterations is needed. Figure 6(d ) shows the
distribution of the number of iterations needed to satisfy convergence criteria at
x+

#
¯ 12.5. The results of figure 6(d ) indicate that about 82% of the samples processed

converged after two iterations only. The data also show that the number of iterations
needed never exceeded 10 for any of the samples considered.

2.6. Vorticity flux modules

In the present work the following definition has been used for vorticity flux σ
w

at the
wall beneath a boundary layer flow:

σ
w

¯ ν90¥ω"

¥x
#

1
w

i0¥ω$

¥x
#

1
w

k: , (2.15)

where i, j and k are unit vectors in the x
"
, x

#
and x

$
directions. Evaluation of the

Navier–Stokes equations at the wall (see (1.8)) indicates that time-dependent
measurements of the two pressure gradients (¥p}¥x

"
)
w

and (¥p}¥x
$
)
w

can provide a
good estimate of vorticity flux.

Four high-frequency-response and high-sensitivity, ultra-miniature pressure tran-
sducers supplied by ENTRAN were used to measure simultaneously the two pressure
gradients. The sensing area of each of the transducers was 0.5 mm in diameter. This
makes the resolution better than that used in the study by Andreopoulos & Agui (1996)
where Kulite pressure transducers of slightly greater size were used. The four pressure
transducers were epoxied together to form a module as shown in figure 7. The
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separation distance between them was 1±4 mm. This module was then placed inside a
bolt with one edge machined flat so that the bolt could be securely threaded in place
in the boundary layer wall. This module will henceforth be referred to as Entran
module for simplicity.

The pressure gradients were computed by the following finite difference scheme:

0¥ω$

¥x
#

1
w

¯®
1

µ 0
¥p
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"
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w
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µ 9
p
%
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: (2.16)
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All four Entran pressure transducers were calibrated simultaneously using a
calibrator made by Thermo Systems Inc. model 1125 which provided the required
range of pressures. The voltage outputs of the transducers were then recorded against
the seven different pressures measured by the micro-manometer with a resolution of
0.00254 mm of water. The calibrations of Entrans demonstrated that the response of
each transducer was linear as expected.

2.7. Instrumentation

The hot-wire sensors of the vorticity probe were operated by 9-channel constant-
temperature anemometers model 56COl}Cl 7 manufactured by Dantec Electronics Inc.

Two analog filters each with 8 input channels and an integrated programmable gain
amplifier (model Filter 488}8) made by I0tech were used to low-pass filter the
anemometer output voltage signals before digitization.

Data acquisition hardware consisted mainly of two 16-bit (1 part in 60000)-
resolution high-performance analog and digital interfaces model ADC488SA manu-
factured by I0tech. The board has an a}d conversion rate of 100000 samples per s. On
board simultaneous sample and hold circuitry allowed simultaneous acquisition of all
channels of data. The acquisition time was less than 1.8 µs with under 0.25 ns aperture
uncertainty between channel. Four software programmable bipolar input ranges
enabled flexible resolution of the signals to be obtained.

Yaw and pitch rotations of the probe were required for determining its pitch and
yaw response. They were computer controlled by a PC-Motion Interface board
supplied by Rogers Lab model ESH-80 and a driver board model ESH 083 which was
installed in IBM micromputer. The stepper motor step size was 1.8° and with a setting
of five microsteps per full step provided more than adequate resolution of yaw and
pitch angle measurements.

2.8. Calibration of the probe and data collection

In-situ calibrations of the probe were carried out in the inviscid free stream of the flow,
once prior to the data acquisition session and again at the end of the experiment. The
probe was placed in the middle of the working section by using a 3 ft slender arm which
was a part of a computer-controlled three-dimensional traversing mechanism.
Extensive yaw and pitch response measurements for each of the sensors were then
obtained by elegant coordination of data acquisition on one microcomputer while
performing required yaw or pitch rotations through motion control hardware
interfaced to another microcomputer. The range of angles covered was ®30° to 30°,
in steps of 5° for both yaw and pitch for five different free-stream velocities.

Data were collected simultaneously on all nine wires with a sampling rate of 5 kHz
per channel for total duration of about 82 s at each point. This was adequate according
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to the criteria prescribed by Klewicki & Falco (1990) for statistical convergence of
ensemble quantities. Actual tests of convergence of statistical quantities up to the
fourth moments also indicated that the total sampling time of 82 s was adequate. The
signals were low-pass filtered at 1 kHz before digitization.

3. Probe resolution considerations

The wire length of each sensor, separation distance between each sensor and finally
spacing of each of the three triple wires were the most important dimensions to be
optimized very carefully in the final configuration of the probe for good spatial
resolution. Although these dimensions are apparently independent, they could not be
varied independently to improve one performance characteristic without introducing
an adverse effect on an other. Wire length for example should be kept as small as
possible to resolve finer scales in the flow but too small an aspect ratio (length}diameter)
of the sensor increases the heat conduction effects and therefore is likely to result in
erroneous data and inaccurate flow quantities. The sensor separation should be as
small as possible to satisfy the assumption that velocity is uniform across the measuring
area, but then this has to be balanced by the thermal wake effects}cross-talk between
the wires. Further, this separation should be less than the Kolmogorov length to
capture the smallest structural scales but then this separation should also be greater
than the Kolmogorov length according to Wyngaard (1969) so that the gradients are
measurable. Both conditions in reality are impossible to satisfy simultaneously. The
third dimension of spacing of each of the three triple wires should be short yet finite
so that the velocity gradients to be evaluated do not disappear. This spacing, if too
small, would result in an unacceptably low signal-to-noise ratio as pointed out by
George (1993, personal communication), Antonia, Zhu & Kim (1993) and Wallace &
Foss (1995).

The estimates of flow scale resolutions expressed in Kolmogorov microscale units
are given in table 2(a). Table 2(b) contains similar estimates expressed in viscous units.
The Kolmogorov length scale η¯ (ν$}ε)"/% indicates the smallest turbulent structure
encountered in the flow. Determining η, however, requires a good estimate of the
turbulent kinetic energy dissipation rate ε, which is very difficult to measure directly in
the laboratory. Previous studies obtained the value of ε by making assumptions to
reduce some of the terms in the expression for the dissipation of energy per unit time
per unit mass :

ε¯ 2νs
ij
s
ij
¯ ν90¥ui

¥x
j

¥u
i

¥x
j

10¥ui

¥x
j

¥u
j

¥x
i

1: . (3.1)

The first term on the right-hand side represents contributions from the homogeneous
part of the flow while the second one represents contribution from the inhomogeneous
part of the flow.

The estimates usually provided for spatial resolution, particularly those based on
indirect methods, may be very misleading. An experiment with poor spatial resolution
will result in the attenuation of all measured turbulence quantities including the
turbulence produced term u

i
u
j
¥U

i
}¥x

j
. This eventually results in lower estimates of the

dissipation rate when ε is determined by difference from the other terms of the
transport equations of turbulent kinetic energy and therefore will indicate erroneously
high resolution.

The dissipation rate ε in the present work has been computed from the measured
values of the terms of the velocity gradient tensor by six different methods, all listed in
table 1(a), which resulted in slightly different wire η

w
and probe resolutions η

p
and
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2.
Homogeneous dissipation εE ν 0¥ui

¥x
j

¥u
i

¥x
j

1 3 5 6

3. Enstrophy-based dissipation εE νω
k
ω

k
3 5 6

4. Isotropy ε¯ 15ν (¥u}¥x)# 3 5 6
5. Axisymmetric isotropy (George & Hussein 1991) 3 5 6
6. Production¯dissipation 2 4 5

ENTRAN pressure transducers — 1.5–2.6 3–5.6

(b) Wire length Probe size}wire separation Probe separation

Hot-wire probe l
w
¯ 0.8 mm; l+

w
¯ 6 l

p
¯ 1.2 (mm); l+

p
¯ 10

l∆x
#

¯ 1.2 (mm) ; l+∆x
#

¯ 10
l∆x

$

¯ 1.44 (mm);
l+∆x

$

¯ 12
Entran pressure
transducers

— d¯ 0.5 (mm); d+ ¯ 4.0 ∆d¯ 1.4 (mm); ∆d+ ¯ 12

T 2. (a) Probe resolution in Kolmogorov microscale units η at x+

#
¯ 12.5,

(b) probe resolution in viscous units.

probe separation distance η∆x
. Although the assumptions involved in each method may

not be valid at x+

#
¯ 12.5, which is the closest to the wall measurement location, the

resulting resolution is comparable to that of Balint et al. (1991) and gets better as the
wall normal distance increases. It should be noted that in the work of Antonia et al.
(1993) the dissipation rate has been estimated under flow homogeneity assumptions
which according to the data of table 2(a) is about 10% less than that based on all terms
of equation (3.1). Figure 8 shows the distribution of the non-dimensional size of the
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wire η
w
, the individual triple-wire-probe resolutions η

p
and the probe separation

distance (η∆x#

, η∆x$

). For x
#
}θ" 1.0 all resolutions improve by approximately a factor

of 1.5.
The present probe, however, is not immune to spatial attenuation problems caused

mainly by the finite spacing of the individual triple-hot-wire probes. The recent work
of E. Ewing & W. K. George (1993, personal communication) where estimates are
provided of attenuation of the vorticity measurements by probes similar to the present
one, suggests that the present measurements of r.m.s. vorticity components may be
attenuated by about 8–15% at x+

#
¯ 12.5. Wyngaard (1969) and Klewicki & Falco

(1990) claimed that for adequate resolution it is necessary that the probe size should
not exceed three Kolmogorov scales. These authors as well Antonia et al. (1993) used
a probe consisting of two parallel wires in their effort to quantify the attenuation of
measured fluctuations. However, the estimates of attenuation provided by these
authors may be questionable because the use of parallel wires precludes using a three-
dimensional response of the effective cooling velocity in King’s law. Ignoring
contributions from the lateral and normal components can cause substantial errors in
the measurements of turbulence.

Although the assumptions made in such theoretical or experimental considerations
of the attenuation problem are not always satisfied in each particular flow, they are
useful in providing an estimate of the uncertainties involved in this type of
measurement. It should be noted that the errors involved in calculating normal and
spanwise components of vorticity were minimized by more accurate estimates of the
velocity gradients in the streamwise direction which are computed using all the terms
in Taylor’s ‘ frozen flow’ expression (see equations: 2.11–2.13). In addition, as will be
shown later, in the limit of vanishing separation between the two probes ∆x

j
, the r.m.s.

of the fluctuations of one velocity gradient ¥u
i
}¥x

j
is given by

lim
∆xj

U
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9∆u
i

∆x
j

:#¯
u#
i

λ#
ij

,

where λ
ij

is Taylor’s microscale. Thus λ
ij

maybe more appropriate than Kolmogorov’s
viscous length for scaling vorticity statistics.

Determining the spatial resolution of the pressure transducers at the wall is more
difficult because dissipation at x+

#
¯ 0 has never been measured. However, if the

available estimate of ε at x+

#
¯ 12.5 is used to extrapolate the distribution of ε down to

the wall according to the recent work of Jovanovic! , Ye & Durst (1995) the size of the
pressure transducers appears to be between η

d
¯ 1±5 and 2±6 Kologorov scales.

The separation distance between the two pressure transducers in the vorticity flux
module appears to be between η∆p

¯ 3 and 5.6. A detailed analysis of the response
characteristics of the vorticity flux probe to turbulent flows with scales smaller than its
size is described by Andreopoulos & Agui (1996). This analysis predicts that the
attenuation of vorticity flux for scales smaller than the probe size is more pronounced
than that of pressure. Correction procedures according to the theory may provide an
estimate of the power spectral density in a frequency range over which the probe spatial
resolution effects are important. However, no corrections have been applied to the
present data because the spatial resolution of the vorticity flux probe is better than that
of the hot-wire probe for the measurements of velocity gradients.



Near-wall region of turbulent boundary layers 45

4. Physics of the structure function

When the differential ∆Q¯Q(r∆r)®Q(r) of a quantity Q(r) is required to be
estimated at a position r, two measurements of the quantity Q at close locations r,
r∆r, are usually attempted. In the present case Q maybe either the velocity vector or
wall pressure. If we consider the average ∆Q#, i.e. the structure function of Q, then

∆Q#¯ [Q(r∆r)®Q(r)]#¯Q#(r) [(1®ρ)#2ρ(1®R∆r
)],

where ρ is the ratio

ρ#¯
Q#(r∆r)

Q#(r)

and R∆r
is the cross-correlation coefficient

R∆r
¯R

r,r+∆r
¯

Q(r)Q(r®∆r)

[Q#(r)]"/#[Q#(r∆r)]"/#
.

Thus for the r.m.s. we can obtain

90∆Q#

∆r# 1:
"/#

¯
[Q#(r)]"/#

∆r
[(1®ρ)#2ρ(1®R∆r

)]"/#. (4.1)

This indicates that the r.m.s. value of the quantity ∆Q}∆r depends on, among other
quantities, (1®ρ) and (1®R∆r

). The first quantity is a measure of the inhomogeneity
of the r.m.s. while the second one indicates the uncorrelated part between the two
signals at r and r∆r. It can be argued that for small separations ∆r, ρE 1. For
instance, if ∆r is oriented in the longitudinal direction of the present flow of a two-
dimensional flat-plate boundary layer, there is very little change of the r.m.s. of any
quantity with ∆x

"
. Thus ρE 1.

For differential changes in the ∆x
#
direction normal to the wall there is minor change

in r.m.s. within a distance ∆x+

#
E 16 very close to the wall, inside the buffer region.

Even in this case ρE 0.95 or higher and R∆r
is about 0.8. Thus the ratio of the two parts

of (4.1) 2ρ(1®R∆r
)}(1®ρ)# is about 150. Therefore it is very reasonable to assume that

ρE 1 or that 2ρ(1®R∆r
)( (1®ρ)# which yields

9∆Q#

∆r# :
"/#

¯
[Q#(r)]"/#

∆r
[2ρ(1®R∆r

)]"/#. (4.2)

This indicates that most contributions to ∆Q}∆r come from the uncorrelated part of the
two signals. Thus there are no vorticity flux or velocity gradients between two perfectly
correlated pressure or velocity signals respectively. It is known that the existence of
small scales in the flow decreases R∆r

. On the other hand two sinusoidal signals with
a phase shift will also result in correlation coefficient R∆r

lower than 1. Thus
contributions to ∆Q}∆r may come from the high-wavenumber part of the spectrum or
out-of-phase large eddies in the low-wavenumber part. Figure 9 shows the power
spectral density of the turbulent kinetic energy "

#
u
i
u
i
and enstrophy "

#
ω
k
ω
k

weighted by
the wavenumber k

"
, as measured in the present investigation. The maxima of the

spectra occur at approximately k
"
δ¯ 20 and k

"
δ¯ 50 respectively. This shift of

maximum spectral energy towards higher wavenumber clearly suggests that enstrophy
fluctuations are mainly a result of a greater proportion of contributions by the smaller
scales whereas the kinetic energy in the flow comes from the larger eddies. These results
also show that there are contributions from the low-wavenumber part of the spectrum
of enstrophy.
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F 9. Spectral densities of enstrophy and kinetic energy weighted by the wavenumber
at x+

#
¯ 12.5.

The limit of equation (4.1) when ∆r approaches zero is also of interest in the present
considerations. In this case R∆r

E 1, ρE 1 and thus the limit appears to become
indefinite. After applying the L’Hospital rule, and considering that when ∆r approaches
zero, R∆r

E1, ρE 1, ¥R}¥∆rE 0 the following relation can be obtained:

lim
∆rU!

9∆Q

∆r :
#

E®Q# 9 ¥#R
¥(∆r)#

9 ¥ρ
¥(∆r):

#: ,
where ¥#R}¥(∆r)# is the curvature of the cross-correlation function R at the origin.
Thus a Taylor microscale λ can be defined as
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It appears that this limit determines the highest attainable value under an ideal probe
resolution. The term (¥ρ}¥∆r)#}(1}λ#) depends on the location r, direction ∆r and the
quantity Q under consideration. In general this ratio is smaller than one and in most
cases it can be neglected. For instance in the present flow and for longitudinal pressure
and velocity gradients this ratio is of the order of 10−# to 10−$ and it can be neglected.
For velocity gradients in the normal to the wall direction ∆x

#
this ratio is of the order

of 10−# for the longitudinal velocity and 10−" for the normal velocity gradient. In the
latter case considerable errors will be introduced if the contribution of this term is
neglected.

In cases where this term can be omitted than (4.3) becomes

9∆Q

(∆r):
#

∆rU!

¯
Q(r)#

λ#

. (4.4)

This relation is also the same as considered as an order of magnitude value for vorticity
fluctuations by Tennekes & Lumley (1972). In addition, (4.4) suggests that, most
probably, λ plays a role in scaling the r.m.s. of vorticity or vorticity flux.
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An attempt has been made to verify (4.3) with experimental data for the case of
longitudinal wall pressure and velocity gradients by computing Taylor’s microscales
λ
p"

and λ
""

from autocorrelations of pressure and longitudinal velocity fluctuations
respectively, after invoking Taylor’s hypothesis. The values obtained were λ

p"
E

3.1 mm and λ
""

E 3.5 mm. Thus the right-hand side of (4.3) can be estimated
reasonably well and compared to the measured values of the r.m.s. (¥p}¥x

"
)« at Reθ ¯

2790 and (¥u
"
}¥x

"
)« at the closest to the wall location, y}δ¯ 0.0107, which are shown

in figures 10 and 24(a) respectively. The ratio of the measured r.m.s. to that obtained
from (4.3) was found to be 0.95 for the longitudinal pressure gradient and 0.9 for the
longitudinal velocity gradient. It is therefore plausible to assume that, within the
uncertainty in estimating λ

p"
and λ

""
, relation (4.3) is valid in general. The result of this

rather limited verification also indicates that there is not much of the spectral content
of scales of pressure or velocity gradient fluctuations unresolved in the longitudinal
direction.

5. Results and discussion

The results of the present investigation are illustrated by adopting the scaling factors
commonly used by many investigators for comparison which, it should be noted,
implies that such scaling would collapse all quantities of turbulence onto a single curve.
This notion of the existence of such a universal scaling is neither well established nor
well investigated. An experimental attempt by Wei & Willmarth (1989) in turbulent
channel flows for a range of Reynolds numbers tried to address this issue. They
concluded from their results that (a) scaling by inner variables of turbulent quantities,
are, at least in the near-wall region, Reynolds-number dependent and (b) whereas the
power spectra of axial velocity were found to scale with these inner variables, the power
spectra of the normal component as well as that of Reynolds shear stress did not.

Further evidence of this strong Reynolds-number dependence in the near-wall region
is shown in figure 10 where the r.m.s. of vorticity flux fluctuations at the wall is plotted
against Reθ. All the data were obtained in the same facility with exception the estimates
of Lu & Smith (1988) who measured fluctuations of ¥#u

"
}¥x#

#
above the wall and

extrapolated these values by orthogonal decomposition to the wall. The measurements
which were carried out in the present wind tunnel were obtained by three different
methods using two different pressure transducers as described by Andreopoulos &
Agui (1996). In the work of Andreopoulos & Agui, Kulite pressure transducers were
used while in the present investigation Entran pressure transducers were employed
because of better spatial resolution. In order to verify the measurements of
Andreopoulos & Agui and test the performance of these pressure transducers several
experiments at different Reθ were carried out. The data obtained are directly compared
to the previous ones in figure 10. As can be seen from this figure the agreement between
the two data sets is very good. The present measurements were also extended to lower
and higher Reθ than before.

The spatial resolution of these measurements also varies with Reθ. The size of the
probe in viscous scale units is four at the lowest Reθ and reaches a value of 18 at the
highest Reθ. It should be noted that the work of Schewe (1983) established that a
transducer size of 19 is adequate for good spatial resolution. Thus the present data,
although not quite immune from the spatial resolution problem at high Reθ, show a
genuine strong Reθ dependence.

The recent view of Gad-el-Hak & Banyopadhyay (1994) indicated that Reynolds
number effects are more evident in higher-order statistics of velocity fluctuations,
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Entran: present data (line: best fit)
Entran: present data
Kulite: Andreopoulos & Agui (1996)
Kulite: Andreopoulos & Agui (1996)
Cross-correlation (Kulite): Andreopoulos & Agui (1996)
Taylor’s hypothesis (Kulite) : Andreopoulos & Agui (1996)
Diagonal transducers (Kulite) : Andreopoulos & Agui (1996)
d2u1

+/dx2
+2 Lu & Smith (1988)
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Reθ or Re
d/s

or Reδ

U¢

(m s−") δ (mm) θ (mm)
uτ

(m s−") Flow type

Present experiment 2790 3.200 140.00 13.60 0.13 Boundary layer
Balint et al. (1991) 2685 3.510 125.00 12.10 0.14 Boundary layer,

hot wire
Klewicki (1989) 2870 1.750 205.00 24.50 0.07 Boundary layer
Spalart (1988) 1410 — — — — Boundary layer

DNS
Kastrinakis &
Eckelmann (1983)

12600 2.000 — — 0.09 Channel,
hot film

Wei & Willmarth (1989) 22776 2.330 — — 0.07 Channel LDA
Kim et al. (1987) 3300 0.639 — 7.00 0.04 Channel DNS
Klebanoff (1954) 78000 — — — — Boundary layer
Andreopoulos & Agui
(1994)

2790 3.200 140.00 13.60 0.13 Boundary layer
LAVOR

Andreopoulos et al.
(1984)

3624 6.33 73.90 8.60 0.25 Boundary layer

Meinhart & Adrian
(1995)

930
2270 (case 2)
6845 (case 3)

1.60
3.79

10.88

75.70
82.80
78.03

9.10
9.84
9.71

0.074
0.158
0.400

Boundary layer,
PIV

Lemonis (1995) 6450 6.400 155.00 15.60 0.23 Boundary layer,
hot wire

Rajagopalan & Antonia
(1993)

1450 2.400 83.00 — 0.10 Boundary layer,
hot wire

Bruns et al. (1992) 2600–16100 — — — — Boundary layer,
hot wire

T 3. Principal parameters of the existing datasets used in the comparison.

particularly in skewness and flatness. However, the present data on vorticity flux show
the strongest Reθ dependence of any turbulence quantity ever considered. This
behaviour may also suggest a possible breakdown of the law of the wall which is similar
to the cases examined in the work of Bradshaw & Huang (1995) in which flows were
considered where the law of the wall has failed. The work of Andreopoulos & Agui
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demonstrated that vorticity flux data show the least Reθ dependence when scaled with
θ and uτ. According to Bradshaw (1996, personal communication) the anomalous
behaviour of the surface gradients may be indicative of Townsend’s inactive motion,
i.e. outer layer fluctuations which perturbing the flow near the wall in a ‘scrubbing’
action similar to that suggested by Kasagi et al. (1995).

Lastly the boundary layer flows on a flat plate, in a pipe, or in a channel have
different characteristics especially at low Reynolds number. The conclusions drawn
therefore need to be viewed in the light of the fact that the scaling laws for these flows
are yet to be established fully. One type of scaling for all quantities in a particular flow
is very unlikely to be entirely satisfactory everywhere in the flow field.

The results of the present investigation are compared with existing data sets by other
researchers in table 3.

5.1. Probe e�aluation

The performance of the present probe and techniques used can be evaluated by
comparing the Reynolds shear stress ρu

"
u
#

measured by each of the three sensors
arrays. This quantity is rather difficult to measure with adequate accuracy because it
is very sensitive to small changes in the experimental conditions and parameters
associated with the probe geometry. A small misalignment, for instance, of the probe
orientation by no more than 2° can introduce substantial errors in the measured shear
stress.

The performance of each of the individual triple-hot-wire probes is demonstrated in
figure 11(a) where the shear stress ρu

"
u
#
normalized by the mean wall shear stress ρu#

τ

is plotted against the distance from the wall x+

#
in inner layer scaling. Three different

profiles are shown together with the resultant profile calculated at the centroid of the
probe. The lines are best fits through the individual data. It can be seen that the
deviation of each of these profiles from each other and from that at the centroid is no
more than 8% which is within the accuracy of the shear stress measurements. The good
agreement among the data also indicates that interference effects between the
individual sensors and blockage effects in general are relatively minor.

Another indicator of minimal blockage and interference effects is the low values of
the stress ρu

#
u
$
measured by the present probe. Strong blockage effects would cause the

streamlines to bend around the probe and thus generate substantial lateral shear stress
ρu

#
u
$
. The fact that the u

#
u+

$
stress never exceeds the value of 0.07 in the near-wall

region (x+

#
! 50) and is practically zero everywhere else suggests that blockage or

interference effects are very limited.
Also on figure 11(a) the values of u

"
u+

#
obtained by the first method of simply

segmented velocity profiles without accounting for the velocity gradient across the
individual triple wire sensors are shown. It is evident that these data are about 0.10, on
average, greater in the near-wall region than those obtained by the second method of
multiply segmented velocity profiles. The difference in the results between these two
methods diminishes as the distance from the wall increases.

The internal consistency of the data is also demonstrated in figure 11(b) where the
turbulent kinetic energy "

#
u
i
u
i

across the boundary layer is plotted against x+

#
as

measured by each of the three individual triple-wire sensors. It can be seen that the
three different profiles agree with each other quite well.

5.2. Reynolds shear stress

The profile of Reynolds shear stress ®ρu
"
u
#

across the boundary layer is shown in
figure 11(c). The r.m.s. values of the shear stress are normalized by the mean shear
stress ρu#

τ and the wall-normal distance by the other variable δ. The present data agree
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quite well when compared with that of Balint, Vukoslavc) evic! & Wallace (1991), Spalart
(1988) and Klebanoff (1954). The near-wall comparison of the turbulent shear stress
shown in figure 11(d ) also reveals good agreement with the values measured by Balint
et al. (1991). But the values of Spalart (1988) are higher than both sets of experimental
results. When compared with the low-Reynolds-number data of Kim, Moin & Moser
(1987), their data appear to be higher than the present results in the buffer region but
lower in the region x+

#
" 35. The two data points for x+

#
! 12.5 shown in this figure are

from the third triple-wire probe which is closer to the wall since it is below the centroid
of the probe. It is important to note that the measurement of the turbulent shear stress
is one of the most difficult and critical tasks to carry out because of the relatively large
uncertainties involved. As a result, laboratory measured values of the Reynolds shear
stress in the near-wall region of a turbulent boundary layer flows show no consistent
trend. On the contrary, rather significant scatter of the data is observed regardless of
the scaling parameter. The present values are found to be in good agreement with those
of Balint et al. (1991) in the near-wall zone as well as in the strong-shear zone. Both
experimental datasets, however, are considerably lower in the near-wall region than the
DNS data of Spalart (1988) or Kim et al. (1987) carried out a lower Reθ.
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F 11. (a) Normalized shear stress measured by the three individual triple wire sensors.
(b) Normalized turbulent kinetic energy measured by the three individual triple wire sensors.
(c) Normalized shear stress u

"
u
#
across the boundary layer. (d ) Normalized shear stress u

"
u
#
in the

near-wall region.

5.3. Velocity component statistics

Figures 12(a), 13(a) and 14(a) show the r.m.s. values of axial, normal and spanwise
velocity components normalized by the friction velocity uτ plotted against the distance
normalized by the outer scale δ. For x

#
}δ" 0.1 the axial velocity fluctuations agree well

with those of Balint et al. (1991) but they are lower in the near-wall region x
#
}δ! 0.1.

The data of Balint et al. follow closely the DNS data of Spalart for Reθ ¯ 1450. The
data of Meinhart & Adrian (1995) appear to be slightly higher in the outer-layer region
than the rest of the data. The present data show reasonably good agreement with the
data of Klebanoff (1954) for x

#
}δ" 0.04. Near the wall, however, Klebanoff’s data are

considerably higher than the present ones. They reach a value of three while the present
data indicate a maximum value of 2.33. Although these data have been obtained at Reθ
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F 12. (a) Measured r.m.s. of axial velocity fluctuations normalized by uτ and δ. (b) Near-wall
distribution of measured r.m.s. of axial velocity fluctuations in inner layer scaling. (c) Measured r.m.s.
of longitudinal velocity fluctuations in outer-layer scaling with uτ and Rotta’s thickness ∆.
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which is about three times higher than the present one they may suffer from non-
equilibrium effects caused by a slow relaxation associated with a very long roughness
strip used to trip the boundary layer. Thus Klebanoff’s boundary layer is similar to that
over a step from a rough to a smooth wall. Relaxation after such disturbances is very
slow and even for shorter roughness strips it may take more than 50δ for the boundary
layer to completely recover (see Andreopoulos & Wood 1982). Thus the large
maximum value of Klebanoff’s data is not a surprise.

All the data indicate that streamwise velocity fluctuations increase at distances closer
to the wall. On the other hand the normal velocity fluctuations show a different trend
in the near-wall region but then agreement is quite good with the measurements of
Balint et al. (1991), Klebanoff (1954) and the simulation results of Spalart (1988) in the
rest of the boundary layer. The data of Meinhart & Adrian (1995) are slightly higher
in the outer-layer region than the rest of the data. The distribution of the r.m.s. of the
spanwise velocity shown in figure 14(a) shows a reasonably good agreement with the
data of Balint et al., the data of Klebanoff and the simulations of Spalart in the outer
part of the flow while differences are evident in the near-wall region. Balint et al.’s data
follow very closely the simulations of Spalart in the near wall while the present
measurements are in agreement with Klebanoff’s data.

The same three velocity fluctuations, scaled with inner variables ν and uτ are plotted
in figures 12(b), 13(b) and 14(b) for x+

#
values up to 100. The streamwise fluctuations

u!

"
are shown in figure 12(b). The present data are consistently lower than the data of

Balint et al. (1991) by about 10% in the near-wall region. The difference between the
two datasets appears to be mainly in the region 40"x+

#
" 20. The data of case 3 of

Meinhart & Adrian (1995) are closer to the present measurements. The data of Bruns,
Dengel & Fernholz (1992) obtained at Reθ ¯ 2600 and the data of Andreopoulos et al.
(1984) obtained at Reθ ¯ 3600 are also plotted for comparison. These two datasets and
the data of Balint et al. agree rather well in the region x+

#
" 20 although the

corresponding Reθ and spatial resolution effects are slightly different among them.
Most of the differences in the measurements of turbulence statistics, in addition to the
Reθ and spatial resolution effects, can be attributed to the differences in the
measurement techniques used, the accuracies associated with each of them and the
errors involved in controlling the experimental conditions. In addition, the issue of
scaling the data in the overlapping region between the lower edge of the logarithmic
layer and the upper end of the buffer zone which corresponds to 40"x+

#
" 20 is not

clear yet (see Dussauge et al. 1996).
In the boundary layer investigated, the r.m.s. values of the normal velocity

component, plotted in figure 13(b), are the lowest when compared with the r.m.s. levels
of axial and spanwise velocity, as expected. The present results are compared to other
data from the works listed in table 2. The effect of accounting for velocity gradients
across the individual sensor arrays is also shown in figure 13(b). The results obtained
with the numerical scheme of method 1 are higher by about 15% than those obtained
with method 2. This simply demonstrates the importance of accounting for velocity
gradients across each triple-wire probe.

The present data are comparable to those obtained in the LDA experiments of Wei
& Willmarth (1989) made with remarkably low spatial resolution in the channel flow.
Kastrinakis & Eckelmann’s (1983) measurements are slightly lower as are the data of
Bruns et al. and Meinhart & Adrian. These datasets illustrate the same trend as the
current measurements. The data of Balint et al. and Andreopoulos et al. (1984),
however, are considerably lower and show a different trend: they decrease much faster
than the rest of the data with decreasing distance from the wall x+

#
.
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The r.m.s. of spanwise velocity fluctuations, shown in figure 14(b), are in good
agreement with Balint et al. (1991) for x+

#
" 40. But near the wall these values deviate

by a significant amount although the data compared used the same wall variables. Wei
& Willmarth (1989) have shown that the turbulence intensities lack similarity with this
scaling. Spalart (1988) and Kim et al. (1987) have also pointed out that these quantities
are Reynolds-number dependent. The data of Bruns et al. are lower than the present
ones and higher than those of Balint et al. Further discussion and comparison of
higher-order moments of velocity fluctuations with the existing datasets can be found
in the thesis by Honkan (1994).

It has been recently suggested by Dussauge et al. (1996) that the displacement
thickness δ* in its normalized form known as Rotta’s thickness and defined as

∆¯&
¢

!

U
e
®U

uτ

dx
#
¯ δ*

U
e

uτ

could be used as outer layer length scale. This type of scaling has been shown in the
work of Dussauge et al. to satisfactorily collapse the turbulent Reynolds stresses in the
outer part of the boundary layer at various Reθ. Figures 12(c), 13(c) and 14(c) show
plots of the data considered in the present work by using ∆ as length scale. The various
data under consideration do not entirely collapse on one curve but show less scatter in
the outer region of the boundary layer than in the case of figures 12(a), 13(a) and 14(a)
where δ was used as a length scale. The present data agree rather well with the data of
Spalart (1988) and Klebanoff (1954) and reasonably well with the data of Bruns et al.
(1992) and Meinhart & Adrian (1995). As expected, large differences among the data
exist in the near-wall region.

Among the previous experimental studies of two-dimensional zero-pressure-gradient
turbulent boundary layers, the present work and that of Balint et al. are quite similar
in terms of bulk flow parameters and techniques used. The present r.m.s. values of the
normal and spanwise velocity fluctuations agree remarkably well with Balint et al.
(1991) for x+

#
" 40 but are higher closer to the wall. Since the drop out rate during the

data reduction of samples closer to the wall was not higher than that in the outer region
of the boundary layer, the noticeable difference could possibly be attributed to a
greater number of velocity vectors being validated as a result of a larger acceptance
cone as mentioned before. Physically, the present results suggest that the ‘splash’ effect
of a turbulent fluid approaching the wall, which is associated with a reduction in
normal fluctuations and an increase in lateral and longitudinal velocity fluctuations as
well as in pressure fluctuations, starts to take place closer to the wall than previously
thought.

In order to investigate how large the excursions of the velocity vector are and to
verify if they are within the ‘acceptance cone’ of the probe, the statistics of two flow
pitch and yaw angles θ

f
and φ

t
are computed. These two flow angles defined as

θ
f
¯ sin−" 0 u

"

(u#

"
u#

#
)"/#1 and φ

f
¯ sin−" 0 u

$

(u#

"
u#

$
)"/#1

together describe the velocity vector orientation completely in space. The r.m.s. values
of both these angles are shown in figure 15(a) as a function of normalized distance x+

#
in the range up to 100. These values have been measured at the centre of the third triple
wire. The peak r.m.s. value for flow pitch angle θ

f
is about 7° and that of flow yaw angle

φ
f

is about 9°. This implies that instantaneous velocity signatures can vary from
®3 r.m.s. to 3 r.m.s., which suggests a 6 r.m.s.E 42° to 54° range of variation. This
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is demonstrated in figure 15(b) where typical instantaneous signatures of both flow
angles θ

f
and φ

f
are plotted. The time series for flow yaw angle φ

f
is shifted by 30 units

for clarity.
On figure 15(a), the present estimates of the r.m.s. of the velocity vector orientation

angles are compared to those of Kreplin & Eckelman (1979). The data of Kreplin &
Eckelman were obtained by integrating the distributions of the p.d.f.s of these angles
which are available in their publication: an uncertainty of the order of 2° may be
associated with this process. The yaw angle r.m.s. values agree very well with those of
Kreplin & Eckelman while the pitch angle r.m.s. is about 1.5° lower. The maximum
yaw angle measured by Kreplin & Eckelman is 30°. An inspection of the signal in
figure 15(b) reveals that the maximum of this sample is also 30°, occurring at about
t¯ 0.025 s. The minimum value of the pitch angle cited in their paper is 10° which
also agrees with the present observations. However, the maximum value of the pitch
angle measured in their work is only 16°, while the present estimates indicate that the
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pitch angle can reach values as high as 30°. This suggests that the motions away from
the wall (pitch angle positive, θ

f
" 0) are more violent in the present boundary layer

than in their channel flow of rather low Reθ ¯ 770.
The present data were further analysed by computing the probability distribution

functions of these angles as measured by the first sensor triplet of the probe. The
probability density distribution of flow angle θ

f
is shown as a function of the r.m.s.

normalized angle in figure 16(a). This distribution is skewed to the left, indicating that
frequently occurring low-amplitude fluctuations are countered by rare but strong
positive fluctuations. This however is not the case for the flow yaw angle φ

f
, since its

distribution is quite symmetric in that positive fluctuations are as likely as negative
ones and that the tails are also symmetrically distributed. High-amplitude fluctuations
of over four times the r.m.s. value of 7°, although less frequent, are observed in figure
16(b), which shows the probability distribution values of flow yaw angle φ

f
against the

angle expressed in terms of its r.m.s. value. It is therefore plausible, in the context of
probe performance, that the probe of Balint et al. (1991) because of its geometry may
not be able to capture these high fluctuations in magnitude and direction of the velocity
vector.

5.4 Production}dissipation of turbulent kinetic energy

The rate of production of turbulent kinetic energy from the mean motion is given by
®u

i
u
j
¥U

i
}¥x

j
and the rate of dissipation of turbulent kinetic energy to heat is given

by expression (3.1).
The distributions of production and dissipation rates of turbulent kinetic energy in

the boundary layer flow at two Reynolds numbers, normalized by inner variables ν}u%
τ

are plotted in figure 17 as a function of x+

#
. The dissipation rates have been computed

by considering all the terms in expression (3.1) for ε because the flow near the wall
clearly being anisotropic, the cross-products of the velocity derivatives may be just as
important as the other terms. On this plot the DNS data of Spalart (1988) and
Mansour, Kim & Moin (1988) and the experimental data Balint et al. (1991) and Wei
& Willmarth (1989) are also superimposed. For reference the relation, ε+¯ 1}kx+

#
(where k is the Ka! rma! n constant) obtained by assuming both rates to be equal in the
logarithmic region, is also plotted. The present values of dissipation rate at both
Reynolds numbers are slightly higher than those of Balint et al. (1991) and the
simulation data of Mansour et al. (1988) but compare well with values of Spalart
(1988). The production rate values also agree quite well with Balint et al. (1991) for the
lower and higher Reθ. These values compare particularly well with Spalart’s (1988)
simulations for x+

#
" 25 and agree with Wei & Willmarth’s (1989) for x+

#
! 25.

The overall assessment of the probe performance in the measurement of velocity
fluctuations appears to be very satisfactory. Accounting for velocity gradients across
the individual triple-wire sensors improved substantially the measurement of shear
stress and the two lateral stresses in the near-wall region. Mutual interference among
the hot-wire sensors is minimal and the shear stress measurements as well as those of
turbulent kinetic energy production and dissipation rates agree quite well with the data
of Balint et al. (1991) and the simulations of Spalart (1981) and Mansour et al. (1981).
The probe seems to, possibly, underestimate by 10% the r.m.s. value of the
longitudinal velocity fluctuations in the upper edge of the buffer-layer region where
most of the existing data disagree and where inner-layer viscous scaling may not be the
proper scale to normalize the data. The use of Rotta’s thickness ∆ to scale the statistical
results in the outer layer appears to reduce the scatter of the data considerably.
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across the boundary layer.

5.5. Accuracy estimates of �elocity gradient measurements

A comparison between the mean velocity gradient (¥U
"
}¥x

#
) and the derivative of the

mean velocity profile (¥U
"
}¥x

#
) is a good indicator of the probe’s ability to measure at

least one velocity gradient with sufficient accuracy. Figure 18 shows the distribution of
the mean velocity gradient (¥U

"
}¥x

#
) across the boundary layer as measured at the

centroid of the nine-wire probe by time-averaging its instantaneous values. On the
same figure data of the mean velocity derivative are plotted which have been obtained
by differentiating Spalding’s (1961) formula of mean velocity distribution in the near-
wall region including the buffer zone and the logarithmic region. In addition, the data
of the mean velocity derivative in the logarithmic region, 1}κx+

#
, where κ is von

Ka! rma! n’s constant, are also plotted for comparison. The data obtained by
differentiating the near-wall velocity measurements of Purtell, Klebanoff & Buckley
(1981) and Andreopoulos et al. (1984) have also been plotted in the same figure. Purtell
et al.’s mean velocity data show no Reθ effect in the near-wall region and therefore the
deduced mean velocity gradient data are independent of Reθ. The data of Andreopoulos
et al. correspond to Reθ ¯ 3624.

The present data are also compared with those of Balint et al. (1991). It appears that
the agreement of the present data with those of Balint et al. and with Spalding’s
formula in the buffer region is very satisfactory. Both datasets are also in very good
agreement with the data obtained from the relation of the logarithmic law in the region
of its validity. The data of Purtell et al. are lower than those predicted by Spalding’s
correlation while the data of Andreopoulos et al. are closer to Spalding’s prediction in
the upper edge of the buffer layer and close to Purtell’s data at the upper edge of the
viscous sublayer. However, if one considers that the uncertainty introduced in
deducing these data and the uncertainty band associated with Spalding’s formula,
which originates from a modest 5% uncertainty in the initial mean velocity
measurements, the agreement of the present measurements with existing data and
correlations is quite satisfactory. It should be also pointed out that Spalding’s relation
should be reconsidered in light of recent demonstrations of limitations of the classical
law-of-the-wall for the viscous sublayer. Bradshaw & Huang (1995), for instance, have
shown that integration of the total shear stress expression yields

¥U
"

¥x+

#

¯ 1®A(x+

#
)$ where A¯

¥u
"

¥x
#

¥p
¥x

#

.

The value of this coefficient, as suggested by Mansour et al. (1988), is 1.4¬10−$ and
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the whole subtracting term represents the contribution of the turbulent part of the total
shear stress if the later is independent of the wall distance in the viscous sublayer. Based
on this relation the velocity gradient appears to be lower than what is calculated from
Spalding’s formula (see figure 18).

Two additional points are plotted in figure 18 which have been obtained by
differentiating the measured mean velocity data at x+

#
¯ 7.33 and x+

#
¯ 17.7 when the

centroid of the probe is located at x+

#
¯ 12.5. This has been accomplished by

considering the finite difference of mean velocities measured by the lower pair of triple-
sensor probes for data at x+

#
¯ 7.33, and by the upper pair of triple-sensor probes for

data at x+

#
¯ 17.7. The average of these two values is almost exactly the value plotted

for the velocity gradient at x+

#
¯ 12.5. The value of the velocity gradient at the nearest

to the wall location falls below Spalding’s prediction but compares very well with
Purtell et al.’s data. Thus, it appears that the probe is capable of measuring mean
velocity gradients within about 12% in the near-wall region. Given the uncertainties
involved in deducing Spalding’s formula this uncertainty can be considered as very
satisfactory. Another indicator of the accuracy involved in the measurements of
velocity gradients is the residual value of the average value of velocity gradient and its
r.m.s. in the free stream: 1.1% and 0.5% of its mean value at the wall, respectively.
In terms of vorticity the residual value of the average vorticity in the free stream is
about 1.3% of the mean wall value while the residual r.m.s. of vorticity is about 1}40
of the measured maximum r.m.s. values in the near-wall region.

Estimates of the uncertainties associated with the measurements of velocity gradients
can also be obtained by considering the propagation of the uncertainties in the
measurement of each quantity involved in the process. A typical velocity gradient is
measured through the following approximation:
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#
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p

P¯F,

where U
#
and U

"
are the velocities at two nearby locations, l

p
is the distance between

these locations and P is the scaling parameter which may be δ}U
e
in the case of outer-

layer scaling or ν}u#
τ if inner layer scaling is used. If the uncertainties in the

measurements of U
#

and U
"

are the same, ∆U
"
¯∆U

#
¯∆U, and l

p
is determined

accurately, then the relative uncertainty ∆F}F will be given by
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for the case of outer laying scaling and
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for the case of inner-layer scaling. A typical ∆U is 1%, which corresponds to about
0.01 m s−", while typical velocity differences U

#
®U

"
can be estimated from the mean

velocity differences at three locations in the boundary layer :
(i) inside the viscous sublayer U

#
®U

"
¯ uτ ∆x+

#
¯ 1.3 m s−" where ∆x+

#
¯ l

p
¯ 10

(probe size) ;
(ii) inside the buffer layer U

#
®U

"
¯ 0.3uτ ∆x+

#
¯ 0.39 m s−" where 0.3 is obtained

from figure 18;
(iii) Inside the logarithmic region at x+

#
¯ 40 U

#
®U

"
¯ uτ ∆x+

#
}kx+

#
¯ 0.08 m s−".

If typical uncertainties of 3% and 5% are assumed in determining δ and uτ respectively,
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then the uncertainty ∆F}F appears to be 10% in the viscous sublayer and buffer region
and 20% in the logarithmic region in the case of inner-layer scaling. If outer-layer
scaling is used the relative uncertainty is 5% in the viscous sublayer, 6% in the buffer
region and 18% in the logarithmic region. Although the way errors propagate through
the data is not always what is described by the square root of mean-squared partial
errors used above, this analysis clearly demonstrates that the uncertainty of the
measured velocity gradient in the near-wall region is higher when inner layer scaling is
used. The relative uncertainty ∆F}F increases as the distance away from the wall
increases because the absolute value of F decreases. However, the difference between
the estimates of uncertainties in the two different scalings decreases with increasing
distance from the wall.

5.6. Vorticity statistics

If the transport equation of vorticity (1.2) is multiplied by ω
i
the transport equation for

the instantaneous enstrophy "

#
ω#
i

can be obtained:

D("
#
ω
i
ω
i
)

Dt
¯ s

ik
ω
k
ω
i
ν

¥#("
#
ω
i
ω
i
)

¥x
k
¥x

k

®ν0¥ωi

¥x
k

1 0¥ωi

¥x
k

1 . (5.1)

It should be also mentioned that the instantaneous enstrophy is the second invariant
of the strain-rate matrix s

ij
(see Soria et al. 1994). The first term on the right-hand side,

ω
k
ω
i
s
ik
, is a source}sink term describing the generation or destruction of enstrophy by

the strain s
ik

through rotation and stretching or compression of vortex lines. The time-
average value of this very important quantity in the dynamics of turbulent flows was
found by Tsinober et al. (1992) to be always positive in grid-generated turbulence,
indicating the prevalence of vortex stretching over compression.

The r.m.s. fluctuations of the three components of vorticity across the boundary
layer have been scaled by the boundary-layer thickness δ and friction velocity uτ and
plotted in figures 19(a), 19(b) and 19(c). The values are then compared with the results
of Spalart (1988), Balint et al. (1991) and Lemonis (1995) for ω

"
, ω

#
and ω

$
.

Additionally the measurements of Klewicki (1989) and Meinhart & Adrian (1995) are
also indicated on the plots for ω

$
. In order to demonstrate the effect of accounting for

the velocity gradients across the individual probes on the vorticity data the data
obtained with method (i) are also plotted for comparison. It can be seen that a 5%
reduction in the r.m.s. of longitudinal vorticity fluctuations in the near-wall region can
be attributed to this effect. At distances greater than 0.1 δ this effect is not noticeable.
It should also be mentioned that this effect is most pronounced in the statistical
quantities of the longitudinal vorticity component. This is not surprising because ω

"
is

based on the velocity gradients of the lateral and normal velocity components which
have been reduced the most by this effect.

Very near to the wall, Balint et al.’s (1991) data for ω
"
are considerably lower than

present data. Spalart’s (1988) data are noted to be lower than both the experimental
measurements. The data provided by Lemonis are very close to the present ones for
x
#
}δ" 0.1 and close to those of Balint et al. (1991) in the near-wall region. The present

values of normal vorticity fluctuations ω!

#
collapse well with Balint et al. (1991) in the

near-wall region but decrease much more gradually in the rest of the boundary layer.
They agree rather well with the data of Lemonis in the outer region. The fluctuations
of the dominant spanwise component of vorticity ω!

$
as measured by this probe

compare very well with the data of Lemonis and the results of Balint et al. (1991). The
PIV result of Meinhart & Adrian (1995) are closer to the simulation data of Spalart
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(1988) but are considerably smaller than the rest of experimental data in the near-wall
region. Case 2b of Meinhart & Adrian’s data correspond to a spatial resolution of
∆x+

"
¯∆x+

#
¯ 20 while the data of case 2a have been obtained with a spatial resolution

of 14 expressed in viscous units.
The same three vorticity components when normalized by the boundary-layer

thickness δ and free-stream velocity U¢ exhibit similar properties but the differences
observed in the previous scaling are not as large. It is expected that in the near-wall
region, inner variables ν and uτ will be appropriate scales. The results, normalized by
the inner variables uτ and ν are shown in figures 20(a), 20(b) and 20(c). As was
demonstrated earlier, the uncertainties involved in the data on vorticity are
considerably higher when inner-layer scaling is used because it involves u#

τ. Thus r.m.s.
values of vorticity component fluctuations, when scaled with uτ and ν, are subject to
large variations when comparisons are made of values obtained from different types of
measurement techniques and simulations. The apparently excessive differences in the
near-wall values of ω

"
appear to be within the normal experimental variations and in

fact the results are comparable to those of Spalart (1988) although at a much lower
Reynolds number and only slightly larger than the simulated results of Kim et al.
(1987). Balint et al. (1991) attribute their attenuated values to the problems associated
with the convergence of the solutions to the equations for the hot-wire outputs. The
present values of the r.m.s. of ω

"
lie between the two simulation results of Kim et al.

(1987) and Spalart (1988). The values of ω
#
are in good agreement with the results of

Balint et al. (1991) but both results are lower than the data of Kim (1987) and Spalart
(1988) for x+

#
! 50. The spanwise component, ω

$
is in close agreement with Balint et al.

(1991) but again, like the normal component, results of Spalart (1988) and Kim et al.
(1987) as well as those of Klewicki (1989) are found to be relatively higher. The data
of Meinhart & Adrian are still lower than the present ones. The LDA results of Agui
& Andreopoulos (1994) have been obtained in the same facility as the present data
under the same conditions. Although these data are in the process of another
verification by different optical techniques, they appear to be genuinely higher than all
hot-wire data, most probably because of better spatial resolution. The LDA
measurements at the point closest to the wall do not follow the general trend, most
probably because of distortions of the probe volume by the nearby wall.

One characteristic feature of vorticity fluctuations is that their magnitude is of the
same order of magnitude or greater than the corresponding mean vorticity. In the
buffer region away from the viscous sublayer the r.m.s. of vorticity fluctuations is
about 0.2 in inner wall units while the mean vorticity as shown in figure 18 is about 0.3.
If the intensity of vorticity fluctuations is defined as the ratio of its r.m.s. to the mean
vorticity value then it will reach values of the order of 60% in this region. In the
log–law region the r.m.s. is about 0.1 while mean vorticity is about 0.02. Thus the
intensity of vorticity fluctuations can be close to 500%.

The skewness values of the present measurements are shown in figures 21(a), 21(b)
and 21(c). The skewness of the axial vorticity component is close to zero while that of
the normal component is more negative when compared to Balint et al. (1991). The
expected all negative variation of skewness in the spanwise component is well
reproduced although numerically much less than that of Spalart (1988) and Klewicki
(1989) in the region x+

#
! 80. The negative values for skewness for ω

$
indicates that

rather large positive fluctuations of spanwise vorticity are less likely than the negative
fluctuations of comparable magnitude, which in turn can be interpreted as stretching
of spanwise component occurring more often than compression or the passage of
vortical eddies.
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F 21. Skewness of (a) longitudinal, (b) normal and (c) spanwise vorticity fluctuations.
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F 22. Flatness of (a) longitudinal, (b) normal and (c) spanwise vorticity fluctuations.
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The flatness values for the three vorticity components F(ω
"
), F(ω

#
) and F(ω

$
) are

shown in figures 22(a), 22(b) and 22(c). A value of 3 corresponding to a Gaussian
distribution is also shown for reference. Numerically simulated values of Spalart (1988)
for ω

"
are quite large, especially in the region x+

#
! 20. For x+

#
" 20 the present values

agree fairly well with Balint et al.’s (1991). The experimental results of Klewicki (1989)
for ω

$
conform to the present data except for the fourth point. Flatness values of Balint

et al. (1991), in comparison, are found to be the lowest throughout the region
displayed. For distances away from the wall, the significant increase in the flatness
factors of the ω

"
and ω

$
components reflects the intermittent character of the flow with

sporadic occurrence of streamwise vortices.
By Reynolds averaging equation (5.1) it is possible to obtain a transport equation for

the time-averaged enstrophy "

#
ω
i
ω
i
. Balint et al. (1988) produced a balance of all terms

of this equation which indicated that the term ω!
k
ω!
i
s
ik

¯ω!

"
ω!

#
s
"#

is the largest
contributor as a source in the total balance. This term reaches very large values near
the wall where s

"#
is maximum. Symmetry considerations and invariance in the

spanwise direction of all average quantities suggest that the cross-correlation
ω!

"
ω!

#
is the only non-zero correlation between the fluctuating vorticity components. In

fact the present measurements at x+

#
¯ 12.5 indicate the following correlation

coefficients r
ij
¯ω!

i
ω!
j
}[ω

i,rms
ω
j,rms

] :r
"#

¯ 0.25, r
"$

¯ 0.06 and r
#$

¯ 0.025.

5.7. Rate-of strain statistics

Understanding the dynamically significant processes in the near-wall region requires
consideration of the transport equation for 2s

ij
s
ij

which is related to the total
dissipation. This is accomplished by taking
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and obtaining a transport equation for each of the right-hand-side terms of this
relation. This equation yields
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The term on the left-hand side can be interpreted as the advection of the instantaneous
2s

ij
s
ij

while the first four terms on the right-hand side are source}sink terms
representing complex nonlinear interactions among the various components of the
strain tensor, rotation and stretching}compression of vorticity and an interaction of
the pressure hessian with the s

ij
. It should be noted that the term ®ω

i
ω
j
s
ij

present in
(5.3) is also present in (5.1) with an opposite sign. If it is positive in (5.1), i.e. is
generating enstrophy, then it attenuates fluctuations in the balance of 2s

ij
s
ij
.

The r.m.s. fluctuations of three off-diagonal components of the rate-of-strain tensor
s
"#

, s
"$

and s
#$

across the boundary layer scaled by δ and uτ are shown in figure 23(a).
They reach maximum values close to the wall and their distribution is similar to that
of the individual components of enstrophy. It should be noted that the r.m.s. values
between s

ij
and ω

k
are related through

s#
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%
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¥u
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j
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(5.4)

(no summation convention is assumed over i, j or k). Symmetry considerations of the
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F 23. R.m.s. of fluctuations of the three off-diagonal components of the rate-of-strain
tensor, (a) across the boundary layer, and (b) in the near-wall region.

present two-dimensional flow suggest that the right-hand side of this relation is always
non-zero, which precludes the ratio of the two r.m.s. from being "

#
. If this term is

neglected by assuming a zero value than the dissipation rate appears to be
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which is strictly valid only for homogeneous flows. It should be mentioned that the
transport equation (5.3) contains contributions from the homogeneous part as well as
from the inhomogeneous part of (5.2).

Figure 23(b) shows the same data scaled by inner wall variables together with the
data of Balint et al. (1991) for a direct comparison. The latter have been computed
from the relation
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(no summation convention is assumed over i, j or k) and the available r.m.s. values of
vorticity components and velocity gradients. It should be mentioned that the present
data for s

ij
obtained directly by time averaging the time-dependent data and those
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F 24. R.m.s. of fluctuations of spatial derivatives of velocity normalized by outer variables.

deduced from equation (5.6) by using existing r.m.s. values of the quantities involved
are identical. This is another indication of the internal consistency of the data.

It appears that the present values are higher than those of Balint et al. (1991) most
probably for the same reasons discussed before, in the previous section, §5.3.
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F 25. R.m.s. of fluctuations of spatial derivatives of velocity normalized by inner variables.

5.8. Velocity gradient statistics

Computed r.m.s. values of all three spatial derivatives of u
i
, normalized by outer

variables δ and uτ are plotted in figures 24(a), 24(b) and 24(c). The streamwise
derivatives of all three velocity components are observed to be much lower in the entire
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boundary layer than those in the wall-normal and spanwise directions, which
themselves are noticeably approximately equal.

For closer comparison these derivatives are normalized by the inner variables and
the plots are shown in figures 25(a), 25(b) and 25(c). R.m.s. values of ¥u

"
}¥x

$
and

¥u
"
}¥x

#
are slightly lower than those of Balint et al. (1991) ; however, ¥u

"
}¥x

"
values are

higher. The same trend is seen in the streamwise derivatives of u
#
and u

$
components,

which can be explained in terms of how these derivatives are evaluated. The present
data take into consideration not only the time derivative but also the other two
derivatives in spanwise and normal directions ((2.11), (2.12) and (2.13)). The ¥u

"
}¥x

#
data of Lu & Smith (1988) are much higher than all the other results. The data of Balint
et al. (1991) for ¥u

#
}¥x

"
and ¥u

#
}¥x

$
are considerably lower; however, ¥u

#
}¥x

#
values

agree fairly well in the region x+

#
! 30. Similar differences are noted for ¥u

$
}¥x

"
and

¥u
$
}¥x

$
. The relatively large differences in ¥u

$
}¥x

#
and ¥u

#
}¥x

$
values when compared

with those of Balint et al. (1991) are similar to those observed in the r.m.s. values of
the streamwise component of vorticity fluctuations. This may be attributed to the
larger acceptance cone of the probe which allows higher fluctuations of velocity
components in the spanwise and normal directions to be validated which, subsequently,
may lead to higher gradients of these velocity components.

5.9. Spectra of �elocity and �orticity components

In order to analyse the distributions of fluctuating velocity and vorticity over the
range of frequencies in the flow, the spectra of the three velocity and the three vorticity
components are computed from the respective instantaneous data. The power spectral
density (p.s.d.) plots of the three velocity components at the centre of the probe as a
function of the streamwise wavenumber k

"
non-dimensionalized by the outer scale δ

are shown in figure 26(a), 26(b) and 26(c). The streamwise wavenumber k
"
¯ 2πf}U is

computed with local axial mean velocity value as the convection velocity (Taylor’s
hypothesis). The data of Balint et al. (1991) are compared in these graphs for the
wavenumber range of 10–250. The present data show good agreement, particularly for
the u

$
component but are lower for u

#
and higher for u

"
in this range of wavenumbers.

The higher spectral values of Balint et al. (1991) for the normal velocity component u
#

indicates that its r.m.s. value is significantly higher than that of the present experiment.
This however is not the case, as the present r.m.s. values of u

#
are higher as seen in

figure 13(b). Their results therefore seem to be inconsistent and hence it is difficult to
explain significant disagreements between the two results for the u

#
component

although both are normalized by the same scales. The slopes of the two spectra
however, are approximately equal, which suggests that the present probe gives as good
a resolution if not better for the smallest scales of turbulence near the wall. It appears
that the spectra of axial and spanwise velocity fluctuations seem to collapse with the
outer scale δ.

Figures 27(a), (27(b) and 27(c) show one-dimensional power spectra of the three
vorticity components at the same wall-normal location of x+

#
¯ 12.5 against the non-

dimensional wavenumber on a log–log scale. The spectra of Balint et al. (1991) for the
respective vorticity components but at x+

#
¯ 18 are also superimposed. The slopes of

the spectra of the streamwise and spanwise vorticity components seem to agree with
those of Balint et al. (1991) although differences exist in the content of the spectra. The
agreement is good in the wavenumber range 10–50 for the ω

#
but then their spectra

drops off sharply for higher wavenumbers. For both axial and spanwise components
the present values show much larger energy content, probably because the probe
validates more velocity vectors at high pitch or yaw angles.
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5.10. PDF distributions

The probability distribution functions for axial, wall-normal and spanwise velocity
components at the centroid of the probe are shown in figures 28(a), 28(b) and 28(c) at
x+

#
¯ 12.5. The abscissa values are expressed in terms of the corresponding r.m.s.

values.
The u-component p.d.f. is more symmetric near the wall, which is reflected in its

flatness factor, and the bimodal behaviour suggests a possible periodicity in the flow.
The work of Andreopoulos et al. (1984) has also suggested a bimodal distribution of
longitudinal velocity fluctuations in the near-wall region. A weak bimodality can be
also observed in the p.d.f.s of Eckelmann (1974) at locations close to the edge of the
viscous sublayer or just outside of it. Intermittent phenomena in the viscous sublayer
which affect the buffer region may be responsible for this behaviour of the p.d.f.s.

Similarly, the normal component deviates from the Gaussian distribution and shows
intense negative fluctuations, to the extent of five times its r.m.s. value, to occur
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although these events associated with intermittency are less frequent. The p.d.f. of the
spanwise component indicates that positive events are as likely as negative ones and the
close to zero value for the skewness of u

$
reflects the two-dimensional nature of the

flow.
The probability distributions of all three vorticity components, as computed at the

x+

#
¯ 12.5 location are shown in figures 29(a), 29(b) and 29(c). It is evident that the

dominant spanwise component is non-Gaussian as it is skewed to the negative while
the axial component shows more random characteristics, with approximately zero
skewness value, as seen in figure 29(a). The tails of p.d.f.s of ω

#
and ω

$
are noticeably

longer than those of ω
"
. It is intriguing to note, as these tails indicate, very large-

amplitude deviations from the mean: as much as 8–10 times the respective r.m.s. values
in wall-normal and spanwise vorticity occur in the viscous sublayer. The probability
however of the occurrence of such violent eruptions is very small. Balint et al. (1991),
however, found erroneous negative skewness for this ω

"
component as a result of

positive bias of low-amplitude fluctuations. The normal component of vorticity is
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observed to be skewed slightly towards negative but very large fluctuations of both
positive as well as negative amplitude are equally likely to occur and contribute
significantly to the high r.m.s. value at this location.

5.11. Conditional sampling techniques

To obtain further insight into the structural characteristics of the two predominant
events, namely ejections and sweeps, which are associated with the near-wall
turbulence, the time-dependent signals of all three vorticity components are
interrogated using the conditional sampling technique as a tool for identifying these
events. The projection θ

v
of vorticity vector in the (x

"
,x

#
)-plane is investigated in

particular first. This angle θ
v

is defined as θ
v
¯ tan−"(ω

#
}ω

"
) and is positive

counterclockwise from the positive x
"
-axis (see figure 30a). The detection of an event

associated with the passage of a structure is triggered when the absolute value of the
amplitude of the time series of ω

#
is above a pre-determined threshold level k(ω

#
)
rms

and
the absolute value of the amplitude of the time series of ω

"
is above a pre-determined

threshold level k(ω
"
)
rms

. The probability distributions of these events conditioned with
the threshold levels of 0, 50 and 100% of the r.m.s. value of ω

"
and ω

#
are shown

in figure 30(b). They have been computed from the data obtained at x+

#
¯ 12.5. The

case with a value of k¯ 0 corresponds to unconditioned data. The first peak in the
distribution of the p.d.f. appears to be at about θ

v
¯ 10° while a second peak occurs

at θ
v
¯®170°. The distributions shown in this figure also demonstrate a periodicity

with 180° period which is a result of the expected invariance of the results with respect
to reflection of the spanwise axis x

$
.

Moin & Kim (1985) carried out a similar analysis of the preferred angles of the
vorticity vector in a large eddy simulation (LES) of a turbulent channel flow. Although
in these simulations the effect of small-scale eddies which dominate the near wear-wall
region is modelled, and therefore not directly calculated, their results also indicate a
vortex line inclination at about 10° and ®170° in the near-wall, region.

Four distinct orientations with much higher probability can be noticed after
conditioning the present data, which are otherwise obscured. The p.d.f.s show two pri-
mary peaks approximately at 35° and ®140°, which are approximately 180° apart and
two secondary peaks at ®35° and 140°. The primary peaks in the first (0°! θ

v
! 90°)

and third (®180°! θ
v
!®90°) quadrants are associated with structures carrying

either positive ω
"
or negative ω

"
. It is very interesting to observe how the application

of a minor threshold to the data changed the most probable inclination from 10° to 35°.
A similar analysis has been carried out for the projection of the vorticity vector on

the (x
"
,x

$
)-plane. This angle φ

v
is defined as φ

v
¯ tan−"(ω

$
}ω

"
) and is positive in the

clockwise direction from the positive x
"
axis towards the positive x

$
axis as shown in

figure 30(a). The results are shown in figure 30(c). It should be noted that in this
analysis the instantaneous values of all three components of vorticity were used, which
for the case of ω

$
, included the mean value. Thus the result of figure 30(c) for the

unconditioned case with k¯ 0, which indicates that the most probable value of the
vorticity inclination on the horizontal plane is about ®90° to the x

"
axis, is not a

surprise. The conditional distributions, however, reveal two peaks in the third
(®180°!φ

v
!®90°) and fourth (®90°!φ

v
! 0°) quadrants which suggest that the

vector on this plane is orientated at φ
v
¯®135° and φ

v
¯®45°. A typical hairpin or

horseshoe vortex has one leg oriented at ®45° and a second one oriented at ®135°.
In order to investigate whether the results of figures 30(b) and 30(c) indicate the same
structure, the distribution of the joint probability density function (j.p.d.f.) of the two
inclinations φ

v
and θ

v
has been also considered. Figure 31(a) shows iso-probability
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contours of the j.p.d.f. of the unconditioned data. The ranges of these two angles were
®180°%φ

v
% 180° and ®90°% θ

v
% 90°. These variations cover the entire domain

uniquely and also determine the ranges of the eight octants which are also indicated in
figure 31(a). It should be noted that the range of the independent variable θ

v
has been

reduced from the ®180°% θ
v
% 180° shown in figure 30(b) to ®90°% θ

v
% 90°, which

is the appropriate range to define the vorticity vector orientation in spherical
coordinates. The upper four octants are characterized by 0°% θ

v
% 90° while the four

lower octants correspond to ®90°% θ
v
% 0°.

The results of figure 31(a) show that the domain with ®180°%φ
v
% 0°, which

represents all the data with ω
$
! 0, contains regions of higher j.p.d.f. than any other

region. In fact events with (θ
v
E®90°, φ

v
E®90°) and (θ

v
E 90°,φ

v
E®90°) show the

highest probability of occurrence. Although the data of figure 30(b) show the first
evidence that events with φ

v
E®90° have very high probability of occurrence, the

results of figure 30(b) do not directly reveal that events with θ
v
E 90° or ®90° are of

importance. Thus the j.p.d.f. provides more information and therefore it is more useful
than the single-variable p.d.f. The peaks at ³90° clearly demonstrate that these
structures carry no longitudinal vorticity.

Secondary peaks in the distribution of j.p.d.f. can be observed in the regions with
(θ

v
E®30°, φ

v
E®135°) and (θ

v
E 20°, φ

v
E®45°), in the VII and III octants

respectively, which may be indicative of hairpin vortices inclined at about 20° to 30°
to the wall.

The application of a conditioning threshold on all three components ω
"
, ω

#
and ω

$
,

reveals some additional information. Figure 31(b) shows the j.p.d.f. of the conditioned
data. The major characteristic is the appearance of rather narrow regions of relatively
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v
in the (x

"
,

x
#
)-plane at x+

#
¯ 12.5, for threshold levels 0, 0.5 and 1. r.m.s. of ω

"
and for ω

#
. (c) Probability density

function of vorticity vector orientation angle φ
v
in the (x

"
,x

$
)-plane at x+

#
¯ 12.5, for threshold levels

0, 0.5 and 1 r.m.s. of ω
"

and ω
$
.

high probability indicating specific preferential directions of the vorticity vector during
some violent events. Most notable are the regions defined by ®60°! θ

v
!®20° and

®180°!φ
v
!®120° in the VII octant and 20°! θ

v
! 60° and ®60°!φ

v
! 60° in

the IV}I octants. Most of these activities are associated with φ
v
! 0° which suggests

that negative spanwise vorticity dominates these events.
Morrison et al. (1992) investigated the bursting mechanism in high-Reynolds-

number turbulent boundary layer flows. They report that negative spanwise vorticity
dominates ejections while positive vorticity is at least larger than that in ejections and
it is associated with sweeps. In the light of this conjecture the primary peaks observed
above may be associated with the burst}sweep sequence.

Other flow structures, however, may also have orientations similar to the preferred
ones shown in figures 30 and 31. ‘Hair-pin’ or ‘arch-like ’ vortices, for instance, are
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characterized by negative ω
$
everywhere in the vortex and positive ω

"
and ω

#
in one leg

and negative ω
"
and ω

#
in the other. The peak at θ

v
¯ 35° of figure 30(b) and the peak

at θ
v
¯®35° of the same figure provide evidence in support of this notion. The flow

visualization observations of Head & Bandyopadhyay (1981) also support the present
findings. Single-point measurements of velocity or two-point correlations of velocity
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made by other investigators have provided evidence that the structures are inclined at
10°. Our analysis of the unconditioned data has also indicated that there is a high
probability of observing this inclination. However, as observed by Haidari & Smith
(1994) and described by Smith & Walker (1995) the inclination of a hairpin vortex can
vary from 10° in the most upstream part of the legs to 45° in the lifted part of the legs
or to more than 45° at the tip of the vortex. The recent DNS data of Crawford &
Karniadakis (1996), although at lower Reynolds number, also indicated a preferential
direction of vorticity in the near-wall region of a developing asymmetric channel flow.
Thus the vorticity vector inclinations measured in the present study are consistent with
previous experimental observations and DNS results. The new information provided
by the present results suggests that these orientation angles of the vorticity vectors are
tied with those of hairpin vortex structures.

5.12. Vorticity and rate-of-strain correlations

Wallace, Balint & Ong (1992) in their analysis of the properties of helicity density with
good spatial resolution h¯ (V[ω)}rV r rωr, V and ω being velocity and vorticity vectors
respectively, in turbulent boundary layer flow at Reθ ¯ 2685 found that in the regions
of high dissipation rate, e.g. near the boundaries, the velocity and vorticity vectors were
nearly orthogonal and as the dissipation rate dropped the probability of these two
vectors aligning increased significantly. Ashurst et al. (1987), on the other hand
examined the coupling of vorticity and the three eigenvectors of the strain rate tensor
for isotropic and homogeneous shear flows by numerical simulations. The matrix of
strain rate tensor s

ij
, being symmetric, has its eigenvectors orthonormal to each other

and under incompressibility conditions the sum of all three eigenvalues is zero,
satisfying the continuity. Their results indicated that vorticity pointed in the direction
of intermediate extensive strain (corresponding to the middle positive eigenvalue of the
strain rate matrix) which they attributed to the conservation principle of angular
momentum. The present data at x+

#
¯ 12.5 (where the flow is considered to be highly

inhomogeneous and slightly anisotropic) was searched to identify if any such linkage
between the eigenvectors and the vorticity vectors exists. Figure 32 shows the plot of
the p.d.f. of the alignment of the vorticity vector with each of the three eigenvectors of
the strain rate matrix obtained by computing all the terms through the spatial
derivatives of velocity components. In this plot α

s
, β

s
and γ

s
are the three eigenvectors

associated with three real eigenvalues of the matrix formed by the strain tensor s
ij
. The

absolute value of the dot product of the unit vectors was used to determine the
direction which varies from 90° to 0°. This graph shows the higher probability of the
vorticity vector aligning with the middle eigenvector β

s
and least it is likely to point in

the direction of the most compressive strain (eigenvector corresponding to the most
negative eigenvalue of the strain rate matrix). However, alignment of vorticity with the
other two eigenvectors is more probable when vorticity is normal to either the α

s
or γ

s

direction.
The sign of ~#p of equation (1.4) indicates whether the strain or vorticity dominates

locally the dynamical processes. At x+

#
¯ 12.5, the present measurements show that the

ratio "

#
ω#
k
}(s

ik
s
ik
) has a value of 0.22 which suggests that on average the strain

dominates the near-wall region. The data of Tsinober et al. indicated a value of this
ratio of 0.32 obtained at x

#
}δ¯ 0.2. Another indication of the strong prevalence of the

strain is the relative magnitude of the first two source terms in equation (5.3)
s
ik

s
kj

s
ij
}"

%
ω
i
ω
j
s
ij

which at y+¯ 12.5 appears to be 22.
Although these time-averaged values may indicate the prevailing situation, the most
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significant dynamical processes may not be described by them because large
fluctuations are associated with these quantities. For instance, the p.d.f. of (1}ρ)~#p,
shown in figure 33, is highly skewed in the negative direction. Negative excursions of
the order of 9 r.m.s. in amplitude have been observed and not only the mean but also
the most probable value of the distribution are negative, which is indicative of the
dominance of the strain over rotation. It appears that enstrophy fluctuations dominate
the dynamics of pressure fluctuations less frequently than the strain.

One general characteristic of all source}sink terms appearing in both transport
equations (5.1) and (5.3) is that they fluctuate considerably about their mean. The ratio
of r.m.s. to mean for the quantity s

ik
s
ki

s
ij

is ®20 while for ω
i
ω
j
s
ij

it is 40.
Consequently long-time averaging may mask some of dynamically important
phenomena. Consider for instance, the time series of several of the terms of these
transport equations, some of which can be considered as matrix invariants of the
velocity gradient or strain-rate tensor (Soria et al. 1994), ω

j
s
lj
, (1}ρ)~#p, s

ij
s
ij
, ω

i
ω
j
s
ij

and s
ik

s
ki

s
ij

together with the shear stress u
"
u
#
and ω

"
as shown in figure 34. All signals

have been normalized by their corresponding r.m.s. It is very interesting to observe that



Near-wall region of turbulent boundary layers 83

(a)0.15

0.10

0.5

0

–0.05

–0.10

–0.15

u 1
 u

2 
(r

.m
.s

.)

0 0.2 0.4 0.6 0.8 1.0

(b)8

4

0

–4

–8

ω
1 

(r
.m

.s
.)

0 0.2 0.4 0.6 0.8 1.0

(c)15

10

5

0

–5

–10

–15

ω
j s

1
j (

r.m
.s

.)

0 0.2 0.4 0.6 0.8 1.0

Time (s)

(d )4

2

0

–2

0 0.2 0.4 0.6 0.8 1.0

(e)10

8

6

s i
j s

ij
 (r

.m
.s

.)

0 0.2 0.4 0.6 0.8 1.0

( f )11

6

1

ω
i ω

j s
ij
 (

r.m
.s

.)

0 0.2 0.4 0.6 0.8 1.0

Time (s)

(1
/ρ

) 
~

2  
p 

(r
.m

.s
.)

0

–4

–6

–10

4

2

–4

–9

–14

–8

( g)8

4

0

s i
k 

s k
j s

ij
 (

r.m
.s

.)

0 0.2 0.4 0.6 0.8 1.0

Time (s)

–4

–8

–12

F 34. Typical signals of various quantities.

all these terms exhibit a very strong intermittent behaviour which is characterized by
bursts of large amplitude, sometimes up to 10 r.m.s. values, followed by less violent
periods. Several of these bursts are evident in all signals, suggesting that a specific flow
phenomenon may be the common cause.
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5.13. Further analysis by conditional sampling techniques

In order to further investigate the type of structures present in the flow the detection
criteria of the conditional sampling procedure are now modified to distinguish high-
amplitude events identified with strongly non-Gaussian strain and vorticity fluctuations
and to explore correlations of strong and weak regions with all other measured flow
quantities of importance to the dynamics of near-wall turbulence. In particular, besides
the three velocity and three vorticity components, the stretching vector ω

k
s
ki
, and the

terms ω
i
ω
j
s
ij

and s
ij
s
ij

were also considered. The signals were conditioned on the three
vorticity components ω

"
, ω

#
and ω

$
, the two vorticity gradients at the wall, ¥ω

"
}¥x

#
and

¥ω
$
}¥x

#
and the stretching vector ω

k
s
ki

and s
ij
s
ij

independently. The algorithm is made
to lock on to that part of the signal to be conditioned, where the amplitude is above
a given threshold k and counts as an ‘event ’ of duration 50 time units above and below
the reference time when the signal is at its local extreme. While this period is somewhat
arbitrary it is equivalent to about 21 viscous time units, which is estimated to be the
duration of the intense activity (see Haritonidis, Gresko & Breuer 1988). Thus all
reference points are brought into alignment and the ensemble average of all such
captured events is considered a candidate indicator of a ‘ typical structure’. A positive
peak event is declared whenever the signal exceeds threshold k and a negative peak
event when the signal is less than ®k. The number of events accumulated by this
technique is dependent directly on the value of the threshold k set during the pass but
these events, at least in a qualitative sense, are believed to focus on the same feature
in the flow. This detection method has been previously used by Her (1986) to detect
high-amplitude pressure peaks and by Haritonidis et al. (1988). This algorithm is
different from the commonly employed VITA (Variable Interval Time Averaging)
technique of Blackwelder & Kaplan (1976) in which an event is counted when the
short-time r.m.s. value of the signal is either above or below a predetermined value.
Thus the VITA technique detects structures mostly with positive and negative
amplitude, i.e. forces a change of sign, while the present detection technique avoids this
type of biasing. This is a substantial difference between the two techniques and it
should be taken into account when interpreting the results. In other words, when a
typical structure obtained by the VITA technique contains a change of sign is not a
surprise. However, when the peak detection technique yields a typical structure with a
sign change it indicates that this type of structure really dominates over many others.

The ensemble-averaged values of fluctuations above their corresponding long time
mean are normalized by the r.m.s. value of the respective quantity and the time units
are normalized by the viscous time ν}u#

τ before they are plotted. The negative abscissa
is interpreted as downstream and positive as upstream with respect to the measuring
location. The conditioned results are analysed and compared to the dynamic events of
streak formation, ejection, bursts and sweeps. It should be mentioned that a variety
of structures, all related to the mechanism of turbulence, named for their shape and
size, e.g. horseshoe, hairpin, pancake}surfboard eddies, arrowhead eddies etc., have
been hypothesized in the extensive literature on the boundary layer flows. (See e.g.
Perry, Lim & Teh 1981; Landahl 1984; Blackwelder & Haritonidis 1983).

Shown in figures 35(a) and 35(b) are some of the ensemble averages conditioned on
positive thresholds of ω

"
for k¯ 2 (ω

"
)
rms

and k¯®2 (ω
"
)
rms

respectively, obtained at
x+

#
E 12.5. Results conditioned on ω

#
and ω

$
can be found in Honkan (1994). The

discussion is based mainly on the conditioning results for the two extreme values of
k¯³2 with the assumption that the typical structures identified are the strongest. It
was noted, however, that the results for other values of k exhibited similar qualitative
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variation in general. The conditioning process is expected to extract the coherent
content from the stochastic background because the events are averaged after the mean
value is subtracted. The turbulent structures associated with ω

"
seem to be of longer

duration than those associated with the other two components of vorticity when
conditioned on ω

"
. The velocity gradient ¥u

$
}¥x

#
dominates over ¥u

#
}¥x

$
and thus

accounts for most of the contributions to the streamwise vorticity ω
"
near the wall, and

at the wall its second derivative ¥#u
$
}¥x#

#
is directly proportional to the spanwise

pressure gradient ¥p}¥x
$
. Therefore these ω

"
events, which are rather intense since the

effect of suppressed mean ω
"

is minimal, may also be associated with the passage of
strong localized shear layers generated by the gradient ¥u

$
}¥x

#
. They are reported to

be more prevalent near the outer edge of the viscous sublayer (x+

#
E 15), finally rolling

up to form streamwise vortical structures. The high values of ω
"
fluctuations have also

been reported by Kasagi et al. (1995) to be linked to the streamwise streak formation
and regions of low pressure. The spanwise vorticity ω

$
is noticeably inactive and mostly

negative but the normal component ω
#
shows a small and sharp peak at the same time

as that of ω
"

and the structure therefore is considered to be sheet like (in the x
"
, x

#
-

plane). This typical structure, recognized by ensemble averaging for k¯ 2, appears to
be tilted upwards by about 16° and moving away from the wall (u

#
" 0, shown in figure

35c). The decreasing u
"
at the same time is suggestive of ‘bursting’ phenomena while

sweeping motions are observed with these structures for k¯®2 (figure 35d ), which are
inclined towards the wall at about 10° and appear to be moving towards the wall
(u

#
! 0) with strong negative streamwise vorticity, eventually affecting the turbulent

shear stress which shows a sharp negative peak. This event may also be viewed as one
of the legs of the hairpin model being lifted up or it may be an isolated longitudinal
vortex. This notion is supported by the fact that the spanwise velocity component u

$
shows the reversal of sign while u

"
u
#
reaches very high negative values for k¯ 2 and

ω
$
is negative for both k¯ 2 and k¯®2. The turbulent shear stress also has a distinct

negative peak for k¯®2.
Figures 35(e) and 35( f ) show the term ©s

ij
s
ij
ª, the three stretching components

©ω
k
s
k"

ª, ©ω
k
s
k#

ª, ©ω
k
s
k$

ª and the enstrophy-generating term ©ω
i
ω
j
s
ij
ª. The

‘dissipation’ term ©s
ij
s
ij
ª remains positive during the duration of both events and

peaks at T+¯ 0. This analysis also establishes a link between the conditioning vorticity
component ω

"
and the stretching component ω

k
s
k"

. If the viscous term in equation
(1.2) is ignored, then the rate of change of vorticity ©Dω

i
}Dtª is directly affected by

the stretching term ©s
ik

ω
k
ª. Considerable stretching is present during the ω

"
" 0 events

and compression of vortex lines is evident during the peak of strong ω
"
! 0 events.

Thus the application of any stretching is immediately evident in the corresponding
vorticity component which itself contains the cumulative effect of the rate of change
©Dω

i
}Dtª. It is interesting to observe that the enstrophy-generating term ©ω

i
ω
j
s
ij
ª is

negative, i.e. below its long-time mean during these events.
It is apparent that the normal gradient ¥u

"
}¥x

#
is the dominating term for ω

$
near

the wall and its spatial gradient term ¥#u
"
}¥x#

#
strongly correlates with the axial pressure

gradient ¥p}¥x
"
. The vorticity flux ¥ω

$
}¥x

#
is thus expected to exhibit this correlation.

The signatures of wall pressure p, vorticity fluxes at the wall ¥ω
"
}¥x

#
and ¥ω

$
}¥x

#
,

vorticity components ω
i
, velocities u

i
, along with the turbulent shear stress ®u

"
u
#
when

conditioned on ¥ω
$
}¥x

#
for k¯ 1.5 are shown in figures 36(a), 36(b) and 36(c). It

should be noted that the Entran module for wall pressures}vorticity flux measurements
was placed approximately 12.5 mm ("

#
in.) upstream of the vorticity probe so that the

measurements by the pressure sensors are not adversely affected by the probe
disturbance and interference. This difference in the position translates to about 8
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F 35(a–c). For caption see facing page.

viscous time units for the patterns of wall pressure and the two vorticity fluxes to reach
the hot-wire position in the conditional results. The vorticity flux data should be
interpreted as the vorticity shed off the solid wall and sensed, to a first-order
approximation, at a nearby point inside the flow at a distance ∆x

#
from the wall as
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The pressure data demonstrate distinct peaks when conditioned on ¥ω
$
}¥x

#
The
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regions of intense spanwise vorticity presumed to be related to the tails of the hairpin
vortices thus illustrate strong correlation with wall pressure event.

5.14. Bursts and sweeps

The data shown in figures 36(a), 36(b) and 36(c) indicate that the local maxima}minima
of pressure occur at the same time T+¯ 0 as the maxima of ©¥ω

$
}¥x

#
ª. Since the

pressure leads velocity and vorticity data the effects attributed to active events of
spanwise vorticity flux in any of the three vorticity components are visualized with a
time delay. In fact the conditional results on ¥ω

$
}¥x

#
show that vorticity ∆ω

"
, and ∆ω

$
shed off the wall at T+¯ 0 is in phase with the vorticity sensed at T+¯ 8. The work
of Andreopoulos & Agui (1996) established that sweeps are associated with a very
rapid rise with time of ©¥ω

$
}¥x

#
ª and that ejections are distinguished by the fast drop

with time of the same quantity. It was also postulated that sweeps and ejections may
share one common vortex lobe. The large value of positive ©u

#
ª shown in figure 36(c)

at T+¯ 8 indicates the passage of ejections which may have been formed shortly after
T+¯ 0, as shown by the rapid drop of ©¥ω

$
}¥x

#
ª.

When the signals are conditioned on ω
$
" 0 the passage of structures of rather short

duration is detected. Figure 37(a) shows the ensemble-averaged values of the three
vorticity components. These averages are above their corresponding long-time mean
value, which for the spanwise component is ®0.6 r.m.s. units. If this long-time mean
is added to the ©ω

$
ª then the pattern of ω

$
will have s substantial part with negative

values immediately after T+¯ 0 in the positive direction. The ©u
#
ª pattern of figure

37(b) reveals that during the time ®1!T+! 1 the normal velocity component
suddenly drops while u

"
remains negative. This configuration is a typical behaviour of

sweeps, which are usually characterized as high-momentum fluid, evident here by the
large excursion of ©u

"
, u

#
ª, moving towards the wall. Morisson, Subramanian &

Bradshaw (1992) by using the VITA technique postulated that sweeps are inverted
mushroom vortices moving towards the wall which are toppled by the mean vorticity
to form an ejection further downstream. The present results, although based on
different conditioning techniques, confirm that sweeps are distinguished by ω

$
vorticity

sharply decreasing with time. In addition, the present results show that ©ω
"
ª is

negligible and that ©ω
#
ª has values very close to ©ω

$
ªωa

$
suggesting there is

considerable tilting of the structure towards the x
#
-direction, of the order of 45°. It is

also interesting to observe that the dissipation term ©s
ij
s
ij
ª is maximum at T+¯ 0 and

that the two components of the stretching vector ©ω
k
s
k#

ª, ©ω
k
s
k$

ª are opposite in sign
to that of the two vorticity components ©ω

#
ª, ©ω

$
ª, indicating that there is considerable

compression of vorticity during sweeps.
The patterns shown in figures 38(a), 38(b) and 38(c) are the outcome of conditioning

the results on ω
$
! 0 The sudden increase of ©u

#
ª at about the origin and the low value

of ©u
"
ª strongly suggest the presence of ejections in the flow pattern. The presence of

a positive stretching component ©ω
k
s
k$

ª throughout the entire event further intensifies
the negative ©ω

$
ª. Thus, it appears that during ejections negative spanwise vorticity is

amplified while longitudinal vorticity remains very small. The data also show that the
normal component of vorticity reaches relatively large negative values at T+¯ 0 when
a sudden eruption takes place as the result of significant stretching by the component
©ω

k
s
k#

ª, which is sizeable.

6. Conclusions

The basic statistical properties of velocity and vorticity fields computed from the
measurements by the miniature probe in the boundary layer experiments are consistent
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with the existing datasets obtained in different facilities, under different conditions and
for a wide range of spatial resolution and, more importantly, confirmed the recent
results of Balint et al. (1991). In particular, their demonstration for the first time of the
shift of maximum energy to higher wavenumbers by comparing the spectra of velocity
and vorticity is strongly supported by the similar shift noted in the spectra of enstrophy
and turbulent kinetic energy of the present flow at comparable Reynolds number.
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Further, the probability density distributions of all three fluctuating vorticity
components also confirmed those of Balint et al. (1991), especially the distinct long tails
in the p.d.f.s of ω

#
and ω

$
. Statistics of velocity and vorticity fluctuations are in

reasonable agreement with the results of Balint et al. (1991). Some deviations of the
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individual velocity gradients can be explained in terms of key differences between the
present probe and the one used by Balint et al. (1991), as listed below.

(a) The present probe does not use a common prong and therefore permits the
electronic operation of each sensor independently.

(b) The probe, because of its different geometry, has a ‘cone of validity ’ of
instantaneous velocity vectors much larger than that of Balint et al. (1991) which has
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one wire inclined 45° to the plane formed by the other two, whereas the present probe
has the same wire inclined at 90° since each of the three wires are mutually orthogonal.

(c) Each sensor of the nine-wire probe could be operated at higher overheat ratios
which allowed variations of yaw and pitch responses of each wire to be taken into
account, which are intrinsically unique for each sensor.

(d ) The streamwise velocity terms of normal and spanwise vorticity have been more
accurately estimated by computing all the terms of Taylor’s hypothesis.

One of the major observations is that the profiles of higher moments of velocity and
vorticity did not collapse under a variety of different scales attempted, indicating the
difficulty of choosing proper scaling parameters which has been reported by other
researchers.

In addition to the confirmation of the flow properties reported by Balint et al. (1991)
of turbulent boundary layers, in this investigation the following new results have been
obtained.

(i) The profiles of flow yaw and pitch angles θ
f
and φ

f
in the near-wall region and

their probability density distributions at y+¯ 12.5 indicate rather rare but intense
fluctuations of the velocity vector orientation.

(ii) The probability density distributions of the orientation of vorticity vectors in the
plane parallel to the wall reveal preferential directions when conditioned at various
threshold levels of (ω

$
)
rms

. These are believed to be associated with bursts and sweeps
and the hairpin-like vortices formed in the near wall. The results of the joint probability
distribution of the vorticity vector orientation angles, shown for the first time, indicate
that the angles may be tied to those of hairpin vortex structures.

(iii) The conditional properties of the simultaneous measurements of wall pressures,
the three components of velocity and vorticity and the two wall-normal gradients of
axial and spanwise vorticity are investigated for the first time. They identify structures
near the wall which are almost always associated with positive and negative spanwise
vorticity of comparable magnitude. The pressure peaks, reported to be strongly related
to the near-wall shear layer and the wavy patterns associated with buffer region flow
instability, (Haritonidis et al. 1988) were also observed in these results.

(iv) The relationship of the strain rate matrix and vorticity vector showed the
vorticity vector at the position closest to the wall to be least likely to align with the most
compressive eigenvector of the strain rate matrix. The modified conditioning technique
in a limited sense revealed some of the complex structural characteristics of turbulence
mechanisms near the wall.

(v) The results on vorticity flux statistics confirmed the previous measurements
obtained by Andreopoulos & Agui (1996) and extended their Reθ range.

(vi) Several matrix invariants, (1}ρ)~#p, s
ij
s
ij
, ω

i
ω
j
s
ij

and s
ik

s
ki

s
ij
, were considered

in the analysis together with the stretching ω
j
s
"j
, shear stress u

"
u
#

and ω
"
, ω

#
, ω

$
. All

these invariants exhibit a very strong intermittent behaviour which is characterized by
bursts of large amplitude, occasionally up to 10 r.m.s. values, followed by less violent
periods. It appears that the strain dominates the fluctuations of pressure more than
enstrophy.

(vii) The present results also demonstrated experimentally the effects of the
stretching vector on vorticity. The application of stretching was found to immediately
affect vorticity.
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